Exploiting syntactic and semantics information for chemical-disease relation extraction

被引:52
作者
Zhou, Huiwei [1 ]
Deng, Huijie [1 ]
Chen, Long [1 ]
Yang, Yunlong [1 ]
Jia, Chen [1 ]
Huang, Degen [1 ]
机构
[1] Dalian Univ Technol, Sch Comp Sci & Technol, Dalian 116024, Peoples R China
来源
DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION | 2016年
基金
中国国家自然科学基金;
关键词
D O I
10.1093/database/baw048
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Identifying chemical-disease relations (CDR) from biomedical literature could improve chemical safety and toxicity studies. This article proposes a novel syntactic and semantic information exploitation method for CDR extraction. The proposed method consists of a feature-based model, a tree kernel-based model and a neural network model. The feature-based model exploits lexical features, the tree kernel-based model captures syntactic structure features, and the neural network model generates semantic representations. The motivation of our method is to fully utilize the nice properties of the three models to explore diverse information for CDR extraction. Experiments on the BioCreative V CDR dataset show that the three models are all effective for CDR extraction, and their combination could further improve extraction performance. Database URL: http://www.biocreative.org/resources/corpora/biocreative-v-cdr-corpus/.
引用
收藏
页数:10
相关论文
共 29 条
[1]  
[Anonymous], 2005, P HUM LANG TECHN C C
[2]  
[Anonymous], 2010, P PYTH SCI C
[3]  
[Anonymous], 2015, P 5 BIOCR CHALL EV W
[4]  
[Anonymous], 2015, P 2015 C EMP METH NA, DOI [10.18653/v1/D15-1280, DOI 10.18653/V1/D15-1280]
[5]  
[Anonymous], 2004, P 42 ANN M ASS COMP
[6]  
Auli M, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2, P136
[7]   LEARNING LONG-TERM DEPENDENCIES WITH GRADIENT DESCENT IS DIFFICULT [J].
BENGIO, Y ;
SIMARD, P ;
FRASCONI, P .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (02) :157-166
[8]   A novel feature-based approach to extract drug-drug interactions from biomedical text [J].
Bui, Quoc-Chinh ;
Sloot, Peter M. A. ;
van Mulligen, Erik M. ;
Kors, Jan A. .
BIOINFORMATICS, 2014, 30 (23) :3365-3371
[9]   A CTD-Pfizer collaboration: manual curation of 88 000 scientific articles text mined for drug-disease and drug-phenotype interactions [J].
Davis, Allan Peter ;
Wiegers, Thomas C. ;
Roberts, Phoebe M. ;
King, Benjamin L. ;
Lay, Jean M. ;
Lennon-Hopkins, Kelley ;
Sciaky, Daniela ;
Johnson, Robin ;
Keating, Heather ;
Greene, Nigel ;
Hernandez, Robert ;
McConnell, Kevin J. ;
Enayetallah, Ahmed E. ;
Mattingly, Carolyn J. .
DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2013,
[10]   Understanding PubMed® user search behavior through log analysis [J].
Dogan, Rezarta Islamaj ;
Murray, G. Craig ;
Neveol, Aurelie ;
Lu, Zhiyong .
DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2009,