Current advances in electrospun gelatin-based scaffolds for tissue engineering applications

被引:213
作者
Aldana, Ana A. [1 ]
Abraham, Gustavo A. [1 ]
机构
[1] INTEMA UNMdP CONICET, Inst Invest Ciencia & Tecnol Mat, Av Juan B Justo 4302,B7608FDQ Mar del Plata, Mar Del Plata, Buenos Aires, Argentina
关键词
Gelatin; Electrospun scaffolds; Tissue engineering; Biopolymers; EXTRACELLULAR-MATRIX; DRUG-DELIVERY; IN-VITRO; NANOFIBROUS MATRICES; TUBULAR SCAFFOLDS; CROSS-LINKING; FABRICATION; CARTILAGE; MEMBRANES; CELLS;
D O I
10.1016/j.ijpharm.2016.09.044
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The development of biomimetic highly-porous scaffolds is essential for successful tissue engineering. Electrospun nanofibers are highly versatile platforms for a broad range of applications in different research areas. In the biomedical field, micro/nanoscale fibrous structures have gained great interest for wound dressings, drug delivery systems, soft and hard-tissue engineering scaffolds, enzyme immobilization, among other healthcare applications. In this mini-review, electrospun gelatin-based scaffolds for a variety of tissue engineering applications, such as bone, cartilage, skin, nerve, and ocular and vascular tissue engineering, are reviewed and discussed. Gelatin blends with natural or synthetic polymers exhibit physicochemical, biomechanical, and biocompatibility properties very attractive for scaffolding. Current advances and challenges on this research field are presented. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:441 / 453
页数:13
相关论文
共 72 条
[1]   Electrospun Nanofibers as Dressings for Chronic Wound Care: Advances, Challenges, and Future Prospects [J].
Abrigo, Martina ;
McArthur, Sally L. ;
Kingshott, Peter .
MACROMOLECULAR BIOSCIENCE, 2014, 14 (06) :772-792
[2]   Functional materials by electrospinning of polymers [J].
Agarwal, Seema ;
Greiner, Andreas ;
Wendorff, Joachim H. .
PROGRESS IN POLYMER SCIENCE, 2013, 38 (06) :963-991
[3]   Progress in the Field of Electrospinning for Tissue Engineering Applications [J].
Agarwal, Seema ;
Wendorff, Joachim H. ;
Greiner, Andreas .
ADVANCED MATERIALS, 2009, 21 (32-33) :3343-3351
[4]   Influence of Gelatin Cues in PCL Electrospun Membranes on Nerve Outgrowth [J].
Alvarez-Perez, Marco Antonio ;
Guarino, Vincenzo ;
Cirillo, Valentina ;
Ambrosio, Luigi .
BIOMACROMOLECULES, 2010, 11 (09) :2238-2246
[5]   Electrospun gelatin scaffolds incorporating rat decellularized brain extracellular matrix for neural tissue engineering [J].
Baiguera, Silvia ;
Del Gaudio, Costantino ;
Lucatelli, Elena ;
Kuevda, Elena ;
Boieri, Margherita ;
Mazzanti, Benedetta ;
Bianco, Alessandra ;
Macchiarini, Paolo .
BIOMATERIALS, 2014, 35 (04) :1205-1214
[6]   Electrospinning: A fascinating fiber fabrication technique [J].
Bhardwaj, Nandana ;
Kundu, Subhas C. .
BIOTECHNOLOGY ADVANCES, 2010, 28 (03) :325-347
[7]   Co-cultivation of keratinocyte-human mesenchymal stem cell (hMSC) on sericin loaded electrospun nanofibrous composite scaffold (cationic gelatin/hyaluronan/chondroitin sulfate) stimulates epithelial differentiation in hMSCs: In vitro study [J].
Bhowmick, Sirsendu ;
Scharnweber, Dieter ;
Koul, Veena .
BIOMATERIALS, 2016, 88 :83-96
[8]   Differentiation of neuronal stem cells into motor neurons using electrospun poly-L-lactic acid/gelatin scaffold [J].
Binan, Loic ;
Tendey, Charlene ;
De Crescenzo, Gregory ;
El Ayoubi, Rouwayda ;
Ajji, Abdellah ;
Jolicoeur, Mario .
BIOMATERIALS, 2014, 35 (02) :664-674
[9]   The application of nanofibrous scaffolds in neural tissue engineering [J].
Cao, Haoqing ;
Liu, Ting ;
Chew, Sing Yian .
ADVANCED DRUG DELIVERY REVIEWS, 2009, 61 (12) :1055-1064
[10]   Tissue engineered nerve constructs: where do we stand? [J].
Chalfoun, C. T. ;
Wirth, G. A. ;
Evans, G. R. D. .
JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2006, 10 (02) :309-317