MORITA EQUIVALENCE OF PARTIAL GROUP ACTIONS AND GLOBALIZATION

被引:10
作者
Abadie, F. [1 ]
Dokuchaev, M. [2 ]
Exel, R. [3 ]
Simon, J. J. [4 ]
机构
[1] Univ Republica, Fac Ciencias, Ctr Matemat, Igua 4225, Montevideo 11400, Uruguay
[2] Univ Sao Paulo, Inst Matemat & Estat, BR-05508090 Sao Paulo, SP, Brazil
[3] Univ Fed Santa Catarina, Dept Matemat, BR-88040900 Florianopolis, SC, Brazil
[4] Univ Murcia, Dept Matemat, E-30071 Murcia, Spain
基金
巴西圣保罗研究基金会;
关键词
Partial action; skew group ring; Morita equivalence; C*-algebra; SKEW POLYNOMIAL-RINGS; C-ASTERISK-ALGEBRAS; PARTIAL CROSSED-PRODUCTS; TWISTED PARTIAL ACTIONS; ENVELOPING ACTIONS;
D O I
10.1090/tran/6525
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a large class of partial actions of groups on rings, called regular, which contains all s-unital partial actions as well as all partial actions on C*-algebras. For them the notion of Morita equivalence is introduced, and it is shown that any regular partial action is Morita equivalent to a globalizable one and that the globalization is essentially unique. It is also proved that Morita equivalent s-unital partial actions on rings with orthogonal local units are stably isomorphic. In addition, we show that Morita equivalent s-unital partial actions on commutative rings must be isomorphic, and an analogous result for C*-algebras is also established.
引用
收藏
页码:4957 / 4992
页数:36
相关论文
共 50 条
  • [31] Morita Equivalence for Factorisable Semigroups
    Yu Qun Chen
    K. P. Shum
    Acta Mathematica Sinica, 2001, 17 : 437 - 454
  • [32] Morita equivalence of finite semigroups
    Ülo Reimaa
    Valdis Laan
    Lauri Tart
    Semigroup Forum, 2021, 102 : 842 - 860
  • [33] Fair semigroups and Morita equivalence
    Laan, Valdis
    Marki, Laszlo
    SEMIGROUP FORUM, 2016, 92 (03) : 633 - 644
  • [34] Morita equivalence of factorizable semigroups
    Laan, Valdis
    Reimaat, Ulo
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2019, 29 (04) : 723 - 741
  • [35] Morita Equivalence for Rings with Involution
    Ara P.
    Algebras and Representation Theory, 1999, 2 (3) : 227 - 247
  • [36] Morita Equivalence for Factorisable Semigroups
    Yu Qun CHEN Department of Mathematics
    ActaMathematicaSinica(EnglishSeries), 2001, 17 (03) : 437 - 454
  • [37] Morita equivalence of finite semigroups
    Reimaa, Ulo
    Laan, Valdis
    Tart, Lauri
    SEMIGROUP FORUM, 2021, 102 (03) : 842 - 860
  • [38] Morita equivalence for graded rings
    Abrams, Gene
    Ruiz, Efren
    Tomforde, Mark
    JOURNAL OF ALGEBRA, 2023, 617 : 79 - 112
  • [39] Poisson geometry and Morita equivalence
    Bursztyn, Henrique
    Weinstein, Alan
    POISSON GEOMETRY, DEFORMATION QUANTISATION AND GROUP REPRESENTATIONS, 2005, 323 : 1 - +
  • [40] Morita equivalence for factorisable semigroups
    Chen, YQ
    Shum, KP
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2001, 17 (03): : 437 - 454