MORITA EQUIVALENCE OF PARTIAL GROUP ACTIONS AND GLOBALIZATION

被引:10
|
作者
Abadie, F. [1 ]
Dokuchaev, M. [2 ]
Exel, R. [3 ]
Simon, J. J. [4 ]
机构
[1] Univ Republica, Fac Ciencias, Ctr Matemat, Igua 4225, Montevideo 11400, Uruguay
[2] Univ Sao Paulo, Inst Matemat & Estat, BR-05508090 Sao Paulo, SP, Brazil
[3] Univ Fed Santa Catarina, Dept Matemat, BR-88040900 Florianopolis, SC, Brazil
[4] Univ Murcia, Dept Matemat, E-30071 Murcia, Spain
基金
巴西圣保罗研究基金会;
关键词
Partial action; skew group ring; Morita equivalence; C*-algebra; SKEW POLYNOMIAL-RINGS; C-ASTERISK-ALGEBRAS; PARTIAL CROSSED-PRODUCTS; TWISTED PARTIAL ACTIONS; ENVELOPING ACTIONS;
D O I
10.1090/tran/6525
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a large class of partial actions of groups on rings, called regular, which contains all s-unital partial actions as well as all partial actions on C*-algebras. For them the notion of Morita equivalence is introduced, and it is shown that any regular partial action is Morita equivalent to a globalizable one and that the globalization is essentially unique. It is also proved that Morita equivalent s-unital partial actions on rings with orthogonal local units are stably isomorphic. In addition, we show that Morita equivalent s-unital partial actions on commutative rings must be isomorphic, and an analogous result for C*-algebras is also established.
引用
收藏
页码:4957 / 4992
页数:36
相关论文
共 50 条
  • [1] Morita equivalence and globalization for partial Hopf actions on nonunital algebras
    Alves, Marcelo Muniz
    Ferrazza, Tiago Luiz
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024,
  • [2] PARTIAL GROUPOID ACTIONS: GLOBALIZATION, MORITA THEORY, AND GALOIS THEORY
    Bagio, Dirceu
    Paques, Antonio
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (10) : 3658 - 3678
  • [3] GLOBALIZATION OF TWISTED PARTIAL ACTIONS
    Dokuchaev, M.
    Exel, R.
    Simon, J. J.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (08) : 4137 - 4160
  • [4] Partial actions of weak Hopf algebras: Smash product, globalization and Morita theory
    Castro, Felipe
    Paques, Antonio
    Quadros, Glauber
    Sant'Ana, Alveri
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (12) : 5511 - 5538
  • [5] Polish globalization of Polish group partial actions
    Pinedo, Hector
    Uzcategui, Carlos
    MATHEMATICAL LOGIC QUARTERLY, 2017, 63 (06) : 481 - 490
  • [6] Globalization of partial actions of semigroups
    Kudryavtseva, Ganna
    Laan, Valdis
    SEMIGROUP FORUM, 2023, 107 (01) : 200 - 217
  • [7] GLOBALIZATION OF TWISTED PARTIAL HOPF ACTIONS
    Alves, Marcelo M. S.
    Batista, Eliezer
    Dokuchaev, Michael
    Paques, Antonio
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2016, 101 (01) : 1 - 28
  • [8] Naturality of Rieffel's Morita Equivalence for Proper Actions
    Huef, Astrid An
    Kaliszewski, S.
    Raeburn, Iain
    Williams, Dana P.
    ALGEBRAS AND REPRESENTATION THEORY, 2011, 14 (03) : 515 - 543
  • [9] Multiplier Hopf algebras: Globalization for partial actions
    Fonseca, Graziela
    Fontes, Eneilson
    Martini, Grasiela
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2020, 30 (03) : 539 - 565
  • [10] Globalization of partial actions of semigroups
    Ganna Kudryavtseva
    Valdis Laan
    Semigroup Forum, 2023, 107 : 200 - 217