INVERTIBILITY OF FOURIER CONVOLUTION OPERATORS WITH PIECEWISE CONTINUOUS SYMBOLS ON BANACH FUNCTION SPACES

被引:0
作者
Fernandes, Claudio [1 ,2 ]
Karlovich, Alexei [1 ,2 ]
Valente, Marcio [2 ]
机构
[1] Univ Nova Lisboa, Fac Ciencias & Tecnol, Ctr Matemat & Aplicaoes CMA, P-2829516 Quinta Da Torre, Caparica, Portugal
[2] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Matemat, P-2829516 Quinta Da Torre, Caparica, Portugal
关键词
Fourier convolution operator; Fourier multiplier; Piecwise constant function; Piecewise continuous function; Invertibility;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend results on the invertibility of Fourier convolution operators with piecewise continuous symbols on the Lebesgue space L-p (R), p is an element of (1, infinity), obtained by Roland Duduchava in the late 1970s, to the setting of a separable Banach function space X(R) such that the Hardy-Littlewood maximal operator is bounded on X(R) and on its associate space X'(R). We specify our results in the case of rearrangement-invariant spaces with suitable Muckenhoupt weights.
引用
收藏
页码:49 / 61
页数:13
相关论文
共 24 条
[1]  
A B~ ottcher Yu. I., 2002, OPERATOR THEORY ADV, V131
[2]  
[Anonymous], 1979, Integral equations with fixed singularities
[3]  
Bennett C., 1988, PURE APPL MATH, V129
[4]  
Bottcher A., 2006, ANAL TOEPLITZ OPERAT
[5]  
Bourbaki N., 2013, General Topology: Chapters 1-4, V18
[6]   INDICES OF FUNCTION SPACES AND THEIR RELATIONSHIP TO INTERPOLATION [J].
BOYD, DW .
CANADIAN JOURNAL OF MATHEMATICS, 1969, 21 (05) :1245-&
[7]  
CruzUribe DV, 2013, APPL NUMER HARMON AN, DOI 10.1007/978-3-0348-0548-3
[8]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+
[9]  
Edwards R. E., 1977, LITTLEWOOD PALEY MUL, V90
[10]   Semi-almost periodic Fourier multipliers on rearrangement-invariant spaces with suitable Muckenhoupt weights [J].
Fernandes, C. A. ;
Karlovich, A. Yu. .
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2020, 26 (03) :1135-1162