Prediction of protein composition of individual cow milk using mid-infrared spectroscopy

被引:40
作者
De Marchi, Massimo [1 ]
Bonfatti, Valentina [1 ]
Cecchinato, Alessio [1 ]
Di Martino, Guido [1 ]
Carnier, Paolo [1 ]
机构
[1] Univ Padua, Dipartimento Sci Anim, I-35020 Legnaro, PD, Italy
关键词
Milk; Protein composition; Mid-infrared spectroscopy; Chemometrics; ITALIAN HOLSTEIN COWS; COAGULATION PROPERTIES; QUALITY; TRAITS; CASEIN; YIELD;
D O I
10.4081/ijas.2009.s2.399
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
This study investigated the application of mid-infrared spectroscopy for the prediction of protein composition in individual milk samples (n=1,336) of Simmental cows. Protein fractions were quantified by RP-HPLC and MIR data were recorded over the spectral range from 4,000 to 900 cm(-1). Models were developed by partial least squares regression using untreated spectra. The most successful predictions were for protein, casein, alpha(S1)-casein, whey protein, and beta-lactoglobulin contents. The models could discriminate between high and low values of protein composition (R(2)=0.50 to 0.58). The root mean square errors of cross-validation were 3.11g/l for protein (range 39.91g/l), 2.76g/l for casein (range 35.16g/l), 1.07 g/l for alpha(S1)-casein (range 12.82g/l), 0.51 g/l for whey protein (range 4.97g/l), and 0.43 for beta-lactoglobulin (range 4.37). Application of MIR spectroscopy is possible for the routinely assessment of protein, casein, alpha(S1)-casein, whey protein, and beta-lactoglobulin and its implementation might be in future a tool for improving protein composition of bovine milk through breeding programs.
引用
收藏
页码:399 / 401
页数:3
相关论文
共 50 条
[31]   Classifying the fertility of dairy cows using milk mid-infrared spectroscopy [J].
Ho, P. N. ;
Bonfatti, V ;
Luke, T. D. W. ;
Pryce, J. E. .
JOURNAL OF DAIRY SCIENCE, 2019, 102 (11) :10460-10470
[32]   Whey Protein Powder Analysis by Mid-Infrared Spectroscopy [J].
Saxton, Rose ;
McDougal, Owen M. .
FOODS, 2021, 10 (05)
[33]   Rapid identification of A1 and A2 milk based on the combination of mid-infrared spectroscopy and chemometrics [J].
Xiao, Shijie ;
Wang, Qiaohua ;
Li, Chunfang ;
Liu, Wenju ;
Zhang, Jingjing ;
Fan, Yikai ;
Su, Jundong ;
Wang, Haitong ;
Luo, Xuelu ;
Zhang, Shujun .
FOOD CONTROL, 2022, 134
[34]   Short communication: Selecting the most informative mid-infrared spectra wavenumbers to improve the, accuracy of prediction models for detailed milk protein content [J].
Niero, G. ;
Penasa, M. ;
Gottardo, P. ;
Cassandro, M. ;
De Marchi, M. .
JOURNAL OF DAIRY SCIENCE, 2016, 99 (03) :1853-1858
[35]   Potential estimation of major mineral contents in cow milk using mid-infrared spectrometry [J].
Soyeurt, H. ;
Bruwier, D. ;
Romnee, J. -M. ;
Gengler, N. ;
Bertozzi, C. ;
Veselko, D. ;
Dardenne, P. .
JOURNAL OF DAIRY SCIENCE, 2009, 92 (06) :2444-2454
[36]   Predictions of Milk Fatty Acid Contents by Mid-Infrared Spectroscopy in Chinese Holstein Cows [J].
Zhao, Xiuxin ;
Song, Yuetong ;
Zhang, Yuanpei ;
Cai, Gaozhan ;
Xue, Guanghui ;
Liu, Yan ;
Chen, Kewei ;
Zhang, Fan ;
Wang, Kun ;
Zhang, Miao ;
Gao, Yundong ;
Sun, Dongxiao ;
Wang, Xiao ;
Li, Jianbin .
MOLECULES, 2023, 28 (02)
[37]   Prediction of Phenolic Composition of Shiraz Wines Using Attenuated Total Reflectance Mid-Infrared (ATR-MIR) Spectroscopy [J].
Ristic, Renata ;
Cozzolino, Daniel ;
Jeffery, David W. ;
Gambetta, Joanna M. ;
Bastian, Susan E. P. .
AMERICAN JOURNAL OF ENOLOGY AND VITICULTURE, 2016, 67 (04) :460-465
[38]   Reproducibility and repeatability of milk coagulation properties predicted by mid-infrared spectroscopy [J].
Penasa, M. ;
De Marchi, M. ;
Ton, S. ;
Ancilotto, L. ;
Cassandro, M. .
INTERNATIONAL DAIRY JOURNAL, 2015, 47 :1-5
[39]   The use of mid-infrared spectra to map genes affecting milk composition [J].
Benedet, A. ;
Ho, P. N. ;
Xiang, R. ;
Bolormaa, S. ;
De Marchi, M. ;
Goddard, M. E. ;
Pryce, J. E. .
JOURNAL OF DAIRY SCIENCE, 2019, 102 (08) :7189-7203
[40]   Comparison of Fatty Acid Proportions Determined by Mid-Infrared Spectroscopy and Gas Chromatography in Bulk and Individual Milk Samples [J].
Samkova, Eva ;
Spicka, Jiri ;
Hanus, Oto ;
Roubal, Petr ;
Pecova, Lenka ;
Hasonova, Lucie ;
Smetana, Pavel ;
Klimesova, Marcela ;
Citek, Jindrich .
ANIMALS, 2020, 10 (06) :1-13