Extending the hierarchical quantum master equation approach to low temperatures and realistic band structures

被引:39
作者
Erpenbeck, A. [1 ,2 ]
Hertlein, C. [1 ,2 ]
Schinabeck, C. [1 ,2 ,3 ]
Thoss, M. [1 ,2 ,3 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Inst Theoret Phys, Staudtstr 7-B2, D-91058 Erlangen, Germany
[2] Friedrich Alexander Univ Erlangen Nurnberg, Interdisciplinary Ctr Mol Mat, Staudtstr 7-B2, D-91058 Erlangen, Germany
[3] Univ Freiburg, Inst Phys, Hermann Herder Str 3, D-79104 Freiburg, Germany
关键词
SINGLE-MOLECULE; ELECTRON-TRANSPORT; CONDUCTANCE; JUNCTIONS;
D O I
10.1063/1.5041716
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The hierarchical quantum master equation (HQME) approach is an accurate method to describe quantum transport in interacting nanosystems. It generalizes perturbative master equation approaches by including higher-order contributions as well as non-Markovian memory and allows for the systematic convergence to the numerically exact result. As the HQME method relies on a decomposition of the bath correlation function in terms of exponentials, however, its application to systems at low temperatures coupled to baths with complexer band structures has been a challenge. In this publication, we outline an extension of the HQME approach, which uses re-summation over poles and can be applied to calculate transient currents at a numerical cost that is independent of temperature and band structure of the baths. We demonstrate the performance of the extended HQME approach for noninteracting tight-binding model systems of increasing complexity as well as for the spinless Anderson-Holstein model. Published by AIP Publishing.
引用
收藏
页数:8
相关论文
共 106 条
  • [1] Spin precession and real-time dynamics in the Kondo model: Time-dependent numerical renormalization-group study
    Anders, Frithjof B.
    Schiller, Avraham
    [J]. PHYSICAL REVIEW B, 2006, 74 (24):
  • [2] [Anonymous], 2005, Introducing Molecular Electronics
  • [3] Characterization of single-molecule pentanedithiol junctions by inelastic electron tunneling spectroscopy and first-principles calculations
    Arroyo, Carlos R.
    Frederiksen, Thomas
    Rubio-Bollinger, Gabino
    Velez, Marisela
    Arnau, Andres
    Sanchez-Portal, Daniel
    Agrait, Nicolas
    [J]. PHYSICAL REVIEW B, 2010, 81 (07):
  • [4] MOLECULAR RECTIFIERS
    AVIRAM, A
    RATNER, MA
    [J]. CHEMICAL PHYSICS LETTERS, 1974, 29 (02) : 277 - 283
  • [5] Experimental Evidence for Quantum Interference and Vibrationally Induced Decoherence in Single-Molecule Junctions
    Ballmann, Stefan
    Haertle, Rainer
    Coto, Pedro B.
    Elbing, Mark
    Mayor, Marcel
    Bryce, Martin R.
    Thoss, Michael
    Weber, Heiko B.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (05)
  • [6] Molecular Wires in Single-Molecule Junctions: Charge Transport and Vibrational Excitations
    Ballmann, Stefan
    Hieringer, Wolfgang
    Secker, Daniel
    Zheng, Qinglin
    Gladysz, John A.
    Goerling, Andreas
    Weber, Heiko B.
    [J]. CHEMPHYSCHEM, 2010, 11 (10) : 2256 - 2260
  • [7] Vibronic effects in single molecule conductance: First-principles description and application to benzenealkanethiolates between gold electrodes
    Benesch, C.
    Cizek, M.
    Klimes, J.
    Kondov, I.
    Thoss, M.
    Domcke, W.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (26) : 9880 - 9890
  • [8] Switching the Conductance of a Single Molecule by Photoinduced Hydrogen Transfer
    Benesch, C.
    Rode, M. F.
    Cizek, M.
    Haertle, R.
    Rubio-Pons, O.
    Thoss, M.
    Sobolewski, A. L.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (24) : 10315 - 10318
  • [9] Many-body theory of electronic transport in single-molecule heterojunctions
    Bergfield, J. P.
    Stafford, C. A.
    [J]. PHYSICAL REVIEW B, 2009, 79 (24)
  • [10] Influence of vibrations on electron transport through nanoscale contacts
    Buerkle, Marius
    Viljas, Janne K.
    Hellmuth, Thomas J.
    Scheer, Elke
    Weigend, Florian
    Schoen, Gerd
    Pauly, Fabian
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2013, 250 (11): : 2468 - 2480