Fast physical repetitive patterns generation for masking in time-delay reservoir computing

被引:17
作者
Argyris, Apostolos [1 ]
Schwind, Janek [1 ,2 ]
Fischer, Ingo [1 ]
机构
[1] Inst Fis Interdisciplinar & Sistemas Complejo IFI, Palma De Mallorca 07122, Spain
[2] Univ Munster, Inst Appl Phys, D-48149 Munster, Germany
关键词
D O I
10.1038/s41598-021-86150-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Albeit the conceptual simplicity of hardware reservoir computing, the various implementation schemes that have been proposed so far still face versatile challenges. The conceptually simplest implementation uses a time delay approach, where one replaces the ensemble of nonlinear nodes with a unique nonlinear node connected to a delayed feedback loop. This simplification comes at a price in other parts of the implementation; repetitive temporal masking sequences are required to map the input information onto the diverse states of the time delay reservoir. These sequences are commonly introduced by arbitrary waveform generators which is an expensive approach when exploring ultra-fast processing speeds. Here we propose the physical generation of clock-free, sub-nanosecond repetitive patterns, with increased intra-pattern diversity and their use as masking sequences. To that end, we investigate numerically a semiconductor laser with a short optical feedback cavity, a well-studied dynamical system that provides a wide diversity of emitted signals. We focus on those operating conditions that lead to a periodic signal generation, with multiple harmonic frequency tones and sub-nanosecond limit cycle dynamics. By tuning the strength of the different frequency tones in the microwave domain, we access a variety of repetitive patterns and sample them in order to obtain the desired masking sequences. Eventually, we apply them in a time delay reservoir computing approach and test them in a nonlinear time-series prediction task. In a performance comparison with masking sequences that originate from random values, we find that only minor compromises are made while significantly reducing the instrumentation requirements of the time delay reservoir computing system.
引用
收藏
页数:12
相关论文
共 52 条
[1]   Information processing using a single dynamical node as complex system [J].
Appeltant, L. ;
Soriano, M. C. ;
Van der Sande, G. ;
Danckaert, J. ;
Massar, S. ;
Dambre, J. ;
Schrauwen, B. ;
Mirasso, C. R. ;
Fischer, I. .
NATURE COMMUNICATIONS, 2011, 2
[2]   Constructing optimized binary masks for reservoir computing with delay systems [J].
Appeltant, Lennert ;
Van der Sande, Guy ;
Danckaert, Jan ;
Fischer, Ingo .
SCIENTIFIC REPORTS, 2014, 4
[3]   Chaos-based communications at high bit rates using commercial fibre-optic links [J].
Argyris, A ;
Syvridis, D ;
Larger, L ;
Annovazzi-Lodi, V ;
Colet, P ;
Fischer, I ;
García-Ojalvo, J ;
Mirasso, CR ;
Pesquera, L ;
Shore, KA .
NATURE, 2005, 438 (7066) :343-346
[4]   Photonic integrated device for chaos applications in communications [J].
Argyris, A. ;
Hamacher, M. ;
Chlouverakis, K. E. ;
Bogris, A. ;
Syvridis, D. .
PHYSICAL REVIEW LETTERS, 2008, 100 (19)
[5]   Photonic machine learning implementation for signal recovery in optical communications [J].
Argyris, Apostolos ;
Bueno, Julian ;
Fischer, Ingo .
SCIENTIFIC REPORTS, 2018, 8
[6]   Permutation entropy: A natural complexity measure for time series [J].
Bandt, C ;
Pompe, B .
PHYSICAL REVIEW LETTERS, 2002, 88 (17) :4
[7]   Broadband Chaos Generated by an Optoelectronic Oscillator [J].
Callan, Kristine E. ;
Illing, Lucas ;
Gao, Zheng ;
Gauthier, Daniel J. ;
Schoell, Eckehard .
PHYSICAL REVIEW LETTERS, 2010, 104 (11)
[8]   Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics [J].
Chan, SC ;
Liu, JM .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2004, 10 (05) :1025-1032
[9]   Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser [J].
Chan, Sze-Chun ;
Hwang, Sheng-Kwang ;
Liu, Jia-Ming .
OPTICS EXPRESS, 2007, 15 (22) :14921-14935
[10]   Lidar detection using a dual-frequency source [J].
Diaz, Rosemary ;
Chan, Sze-Chun ;
Liu, Jia-Ming .
OPTICS LETTERS, 2006, 31 (24) :3600-3602