High-cadence Imaging and Imaging Spectroscopy at the GREGOR Solar Telescope-A Collaborative Research Environment for High-resolution Solar Physics

被引:10
作者
Denker, Carsten [1 ]
Kuckein, Christoph [1 ]
Verma, Meetu [1 ]
Manrique, Sergio J. Gonzalez [1 ,2 ,3 ]
Diercke, Andrea [1 ,3 ]
Enke, Harry [1 ]
Klar, Jochen [1 ]
Balthasar, Horst [1 ]
Louis, Rohan E. [1 ,4 ]
Dineva, Ekaterina [1 ,3 ]
机构
[1] Leibniz Inst Astrophys Potsdam AIP, Sternwarte 16, D-14482 Potsdam, Germany
[2] Slovak Acad Sci, Astron Inst, Tatranska Lomnica 05960, Slovakia
[3] Univ Potsdam, Inst Phys & Astron, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
[4] Indian Inst Sci Educ & Res Kolkata, Ctr Excellence Space Sci India, Nadia 741246, West Bengal, India
关键词
astronomical databases; methods: data analysis; Sun: chromosphere; Sun: photosphere; techniques: image processing; techniques: spectroscopic; H-ALPHA; OPTICAL TELESCOPE; DATA ARCHIVE; INSTRUMENT; MISSION; NETWORK; DESIGN; SOLIS; SUN;
D O I
10.3847/1538-4365/aab773
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In high-resolution solar physics, the volume and complexity of photometric, spectroscopic, and polarimetric ground-based data significantly increased in the last decade, reaching data acquisition rates of terabytes per hour. This is driven by the desire to capture fast processes on the Sun and the necessity for short exposure times "freezing" the atmospheric seeing, thus enabling ex post facto image restoration. Consequently, large-format and high-cadence detectors are nowadays used in solar observations to facilitate image restoration. Based on our experience during the "early science" phase with the 1.5m GREGOR solar telescope (2014-2015) and the subsequent transition to routine observations in 2016, we describe data collection and data management tailored toward image restoration and imaging spectroscopy. We outline our approaches regarding data processing, analysis, and archiving for two of GREGOR's post-focus instruments (see http://gregor.aip.de), i.e.,the GREGOR Fabry-Perot Interferometer (GFPI) and the newly installed High-Resolution Fast Imager (HiFI). The heterogeneous and complex nature of multidimensional data arising from high-resolution solar observations provides an intriguing but also a challenging example for "big data" in astronomy. The big data challenge has two aspects: (1) establishing a workflow for publishing the data for the whole community and beyond and (2) creating a collaborative research environment (CRE), where computationally intense data and postprocessing tools are colocated and collaborative work is enabled for scientists of multiple institutes. This requires either collaboration with a data center or frameworks and databases capable of dealing with huge data sets based on virtual observatory (VO) and other community standards and procedures.
引用
收藏
页数:12
相关论文
共 88 条
  • [1] Image Processing Techniques and Feature Recognition in Solar Physics
    Aschwanden, Markus J.
    [J]. SOLAR PHYSICS, 2010, 262 (02) : 235 - 275
  • [2] DeepVel : Deep learning for the estimation of horizontal velocities at the solar surface
    Asensio Ramos, A.
    Requerey, I. S.
    Vitas, N.
    [J]. ASTRONOMY & ASTROPHYSICS, 2017, 604
  • [3] The MUSE second-generation VLT instrument
    Bacon, R.
    Accardo, M.
    Adjali, L.
    Anwand, H.
    Bauer, S.
    Biswas, I.
    Blaizot, J.
    Boudon, D.
    Brau-Nogue, S.
    Brinchmann, J.
    Caillier, P.
    Capoani, L.
    Carollo, C. M.
    Contini, T.
    Couderc, P.
    Daguise, E.
    Deiries, S.
    Delabre, B.
    Dreizler, S.
    Dubois, J.
    Dupieux, M.
    Dupuy, C.
    Emsellem, E.
    Fechner, T.
    Fleischmann, A.
    Francois, M.
    Gallou, G.
    Gharsa, T.
    Glindemann, A.
    Gojak, D.
    Guiderdoni, B.
    Hansali, G.
    Hahn, T.
    Jarno, A.
    Kelz, A.
    Koehler, C.
    Kosmalski, J.
    Laurent, F.
    Le Floch, M.
    Lilly, S. J.
    Lizon, J. -L
    Loupias, M.
    Manescau, A.
    Monstein, C.
    Nicklas, H.
    Olaya, J-C
    Pares, L.
    Pasquini, L.
    Pecontal-Rousset, A.
    Pello, R.
    [J]. GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY III, 2010, 7735
  • [4] DATA MINING AND MACHINE LEARNING IN ASTRONOMY
    Ball, Nicholas M.
    Brunner, Robert J.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2010, 19 (07): : 1049 - 1106
  • [5] Three-dimensional simulations of near-surface convection in main-sequence stars III. The structure of small-scale magnetic flux concentrations
    Beeck, B.
    Schuessler, M.
    Cameron, R. H.
    Reiners, A.
    [J]. ASTRONOMY & ASTROPHYSICS, 2015, 581
  • [6] BENDLIN C, 1992, ASTRON ASTROPHYS, V257, P817
  • [7] Bentley R. D., 1998, ESA SPEC PUBL, V417, P225
  • [8] Bentley RD, 2002, ESA SP PUBL, V477, P603
  • [9] The GREGOR adaptive optics system
    Berkefeld, Th
    Schmidt, D.
    Soltau, D.
    von der Luehe, O.
    Heidecke, F.
    [J]. ASTRONOMISCHE NACHRICHTEN, 2012, 333 (09) : 863 - 871
  • [10] Petascale cyberinfrastructure for ground-based solar physics: approach of the DKIST Data Center
    Berukoff, S.
    Hays, T.
    Reardon, K.
    Spiess, D. J.
    Watson, F.
    Wiant, S.
    [J]. SOFTWARE AND CYBERINFRASTRUCTURE FOR ASTRONOMY IV, 2016, 9913