Ustilago maydis produces itaconic acid via the unusual intermediate trans-aconitate

被引:99
作者
Geiser, Elena [1 ]
Przybilla, Sandra K. [2 ]
Friedrich, Alexandra [2 ]
Buckel, Wolfgang [2 ]
Wierckx, Nick [1 ]
Blank, Lars M. [1 ]
Boelker, Michael [2 ,3 ]
机构
[1] Rhein Westfal TH Aachen, ABBt Aachen Biol & Biotechnol, iAMB Inst Appl Microbiol, Worringerweg 1, D-52074 Aachen, Germany
[2] Univ Marburg, Dept Biol, Karl von Frisch Str 8, D-35032 Marburg, Germany
[3] LOEWE Ctr Synthet Microbiol SYNMIKRO, Hans Meerwein Str, D-35032 Marburg, Germany
来源
MICROBIAL BIOTECHNOLOGY | 2016年 / 9卷 / 01期
关键词
3-CARBOXY-CIS; CIS-MUCONATE LACTONIZING ENZYME; ASPERGILLUS-TERREUS; PSEUDOMONAS-PUTIDA; CRYSTAL-STRUCTURE; PROTEIN; GENE; STRAINS; DECARBOXYLASE; BIOSYNTHESIS; ACCUMULATION;
D O I
10.1111/1751-7915.12329
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Itaconic acid is an important biomass-derived chemical building block but has also recently been identified as a metabolite produced in mammals, which has antimicrobial activity. The biosynthetic pathway of itaconic acid has been elucidated in the ascomycetous fungus Aspergillus terreus and in human macrophages. In both organisms itaconic acid is generated by decarboxylation of the tricarboxylic acid (TCA) cycle intermediate cis-aconitate. Here, we show that the basidiomycetous fungus Ustilago maydis uses an alternative pathway and produces itaconic acid via trans-aconitate, the thermodynamically favoured isomer of cis-aconitate. We have identified a gene cluster that contains all genes involved in itaconic acid formation. Trans-aconitate is generated from cis-aconitate by a cytosolic aconitate-.isomerase (Adi1) that belongs to the PrpF family of proteins involved in bacterial propionate degradation. Decarboxylation of trans-aconitate is catalyzed by a novel enzyme, trans-aconitate decarboxylase (Tad1). Tad1 displays significant sequence similarity with bacterial 3-carboxy-cis, cis-muconate lactonizing enzymes (CMLE). This suggests that U. maydis has evolved an alternative biosynthetic pathway for itaconate production using the toxic intermediate trans-aconitate. Overexpression of a pathway-specific transcription factor (Ria1) or a mitochondrial tricarboxylic acid transporter (Mtt1) resulted in a twofold increase in itaconate yield. Therefore, our findings offer new strategies for biotechnological production of this valuable biomass-derived chemical.
引用
收藏
页码:116 / 126
页数:11
相关论文
共 61 条
[1]   MICROBIOLOGICAL DISSIMILATION OF TRICARBALLYLATE AND TRANS-ACONITATE [J].
ALTEKAR, WW ;
RAGHAVEN.MR .
JOURNAL OF BACTERIOLOGY, 1963, 85 (03) :604-+
[2]  
BENTLEY R, 1957, J BIOL CHEM, V226, P703
[3]  
BENTLEY R, 1957, J BIOL CHEM, V226, P673
[4]   Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production [J].
Blazeck, John ;
Miller, Jarrett ;
Pan, Anny ;
Gengler, Jon ;
Holden, Clinton ;
Jamoussi, Mariam ;
Alper, Hal S. .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2014, 98 (19) :8155-8164
[5]   Targeting enzymes to the right compartment: Metabolic engineering for itaconic acid production by Aspergillus niger [J].
Blumhoff, Marzena L. ;
Steiger, Matthias G. ;
Mattanovich, Diethard ;
Sauer, Michael .
METABOLIC ENGINEERING, 2013, 19 :26-32
[6]   A reverse genetic approach for generating gene replacement mutants in Ustilago maydis [J].
Brachmann, A ;
König, J ;
Julius, C ;
Feldbrügge, M .
MOLECULAR GENETICS AND GENOMICS, 2004, 272 (02) :216-226
[7]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[8]   Ustilago maydis as a Pathogen [J].
Brefort, Thomas ;
Doehlemann, Gunther ;
Mendoza-Mendoza, Artemio ;
Reissmann, Stefanie ;
Djamei, Armin ;
Kahmann, Regine .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 2009, 47 :423-445
[9]   Photosynthetic production of itaconic acid in Synechocystis sp PCC6803 [J].
Chin, Taejun ;
Sano, Mei ;
Takahashi, Tetsuya ;
Ohara, Hitomi ;
Aso, Yuji .
JOURNAL OF BIOTECHNOLOGY, 2015, 195 :43-45
[10]  
CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P156, DOI 10.1016/0003-2697(87)90021-2