Particle Gibbs Split-Merge Sampling for Bayesian Inference in Mixture Models

被引:0
|
作者
Bouchard-Cote, Alexandre [1 ]
Doucet, Arnaud [2 ]
Roth, Andrew [2 ,3 ]
机构
[1] Univ British Columbia, Dept Stat, 3182 Earth Sci Bldg,2207 Main Mall, Vancouver, BC V6T 1Z4, Canada
[2] Univ Oxford, Dept Stat, Oxford, England
[3] Univ Oxford, Ludwig Inst Canc Res, Oxford, England
基金
加拿大自然科学与工程研究理事会; 英国工程与自然科学研究理事会;
关键词
Dirichlet process mixture models; Gibbs sampler; Particle Gibbs sampler; Sequential Monte Carlo; SEQUENTIAL MONTE-CARLO; UNKNOWN NUMBER;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents an original Markov chain Monte Carlo method to sample from the posterior distribution of conjugate mixture models. This algorithm relies on a flexible split-merge procedure built using the particle Gibbs sampler introduced in Andrieu et al. (2009, 2010). The resulting so-called Particle Gibbs Split-Merge sampler does not require the computation of a complex acceptance ratio and can be implemented using existing sequential Monte Carlo libraries. We investigate its performance experimentally on synthetic problems as well as on geolocation data. Our results show that for a given computational budget, the Particle Gibbs Split-Merge sampler empirically outperforms existing split merge methods. The code and instructions allowing to reproduce the experiments is available at https://github.com/aroth85/pgsm
引用
收藏
页数:39
相关论文
共 50 条
  • [21] EM Algorithm with Split and Merge Operations for Mixture Models
    Ueda, Naonori
    Nakano, Ryohei
    Systems and Computers in Japan, 2000, 31 (4-6) : 1 - 11
  • [22] EM algorithm with split and merge operations for mixture models
    Ueda, Naonori
    Nakano, Ryohei
    IEICE Transactions on Information and Systems, 2000, E83-D (12) : 2047 - 2055
  • [23] EM algorithm with split and merge operations for mixture models
    Ueda, N
    Nakano, R
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2000, E83D (12): : 2047 - 2055
  • [24] Conjugate Gibbs sampling for Bayesian phylogenetic models
    Lartillot, Nicolas
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2006, 13 (10) : 1701 - 1722
  • [25] PRODUCTION UNCERTAINTIES MODELLING BY BAYESIAN INFERENCE USING GIBBS SAMPLING
    Azizi, A.
    bin Ali, A. Y.
    Ping, L. W.
    Mohammadzadeh, M.
    SOUTH AFRICAN JOURNAL OF INDUSTRIAL ENGINEERING, 2015, 26 (03): : 27 - 40
  • [26] INFERENCE FOR NONCONJUGATE BAYESIAN MODELS USING THE GIBBS SAMPLER
    CARLIN, BP
    POLSON, NG
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1991, 19 (04): : 399 - 405
  • [27] Bayesian inference on variance components using Gibbs sampling with various priors
    Lee, C
    Wang, CD
    ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES, 2001, 14 (08): : 1051 - 1056
  • [28] Bayesian inference for partially accelerated life tests using Gibbs sampling
    Madi, MT
    MICROELECTRONICS AND RELIABILITY, 1997, 37 (08): : 1165 - 1168
  • [29] Application of a Bayesian simulation model to a database for split liver transplantation on two adult recipients in the environment of WinBUGS (Bayesian inference Using Gibbs Sampling)
    Santori, G.
    Valente, R.
    Andorno, E.
    Ghirelli, R.
    Valente, U.
    TRANSPLANTATION PROCEEDINGS, 2007, 39 (06) : 1918 - 1920
  • [30] Approximate Bayesian inference for mixture cure models
    E. Lázaro
    C. Armero
    V. Gómez-Rubio
    TEST, 2020, 29 : 750 - 767