Particle Gibbs Split-Merge Sampling for Bayesian Inference in Mixture Models

被引:0
|
作者
Bouchard-Cote, Alexandre [1 ]
Doucet, Arnaud [2 ]
Roth, Andrew [2 ,3 ]
机构
[1] Univ British Columbia, Dept Stat, 3182 Earth Sci Bldg,2207 Main Mall, Vancouver, BC V6T 1Z4, Canada
[2] Univ Oxford, Dept Stat, Oxford, England
[3] Univ Oxford, Ludwig Inst Canc Res, Oxford, England
基金
加拿大自然科学与工程研究理事会; 英国工程与自然科学研究理事会;
关键词
Dirichlet process mixture models; Gibbs sampler; Particle Gibbs sampler; Sequential Monte Carlo; SEQUENTIAL MONTE-CARLO; UNKNOWN NUMBER;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents an original Markov chain Monte Carlo method to sample from the posterior distribution of conjugate mixture models. This algorithm relies on a flexible split-merge procedure built using the particle Gibbs sampler introduced in Andrieu et al. (2009, 2010). The resulting so-called Particle Gibbs Split-Merge sampler does not require the computation of a complex acceptance ratio and can be implemented using existing sequential Monte Carlo libraries. We investigate its performance experimentally on synthetic problems as well as on geolocation data. Our results show that for a given computational budget, the Particle Gibbs Split-Merge sampler empirically outperforms existing split merge methods. The code and instructions allowing to reproduce the experiments is available at https://github.com/aroth85/pgsm
引用
收藏
页数:39
相关论文
共 50 条
  • [1] Split-Merge Algorithm and Gaussian Mixture Models for AAL
    Yin, GuoQing
    Bruckner, Dietmar
    IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE 2010), 2010, : 2314 - 2318
  • [2] Split-merge incremental LEarning (SMILE) of mixture models
    Blekas, Konstantinos
    Lagaris, Isaac E.
    ARTIFICIAL NEURAL NETWORKS - ICANN 2007, PT 2, PROCEEDINGS, 2007, 4669 : 291 - +
  • [3] Particle Gibbs sampling for Bayesian phylogenetic inference
    Wang, Shijia
    Wang, Liangliang
    BIOINFORMATICS, 2021, 37 (05) : 642 - 649
  • [4] The Gibbs and split-merge sampler for population mixture analysis from genetic data with incomplete baselines
    Pella, J
    Masuda, M
    CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES, 2006, 63 (03) : 576 - 596
  • [5] Two Alternative Criteria for a Split-Merge MCMC on Dirichlet Process Mixture Models
    Hosino, Tikara
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, PT II, 2017, 10614 : 672 - 679
  • [6] ADAPTIVE SPLIT-MERGE ALGORITHM FOR GAUSSIAN MIXTURE MODELS TO SOLVE THE KOLMOGOROV EQUATION
    Vishwajeet, Kumar
    Singla, Puneet
    ASTRODYNAMICS 2013, PTS I-III, 2014, 150 : 977 - 988
  • [7] Online Video Segmentation by Bayesian Split-Merge Clustering
    Lee, Juho
    Kwak, Suha
    Han, Bohyung
    Choi, Seungjin
    COMPUTER VISION - ECCV 2012, PT IV, 2012, 7575 : 856 - 869
  • [8] A Fully Bayesian Inference with Gibbs Sampling for Finite and Infinite Discrete Exponential Mixture Models
    Su, Xuanbo
    Zamzami, Nuha
    Bouguila, Nizar
    APPLIED ARTIFICIAL INTELLIGENCE, 2022, 36 (01)
  • [9] Gaussian Mixture Models and Split-Merge Algorithm for Parameter Analysis of Tracked Video Objects
    Yin, GuoQing
    Bruckner, Dietmar
    IECON: 2009 35TH ANNUAL CONFERENCE OF IEEE INDUSTRIAL ELECTRONICS, VOLS 1-6, 2009, : 3942 - +
  • [10] Mixture models with an unknown number of components via a new posterior split-merge MCMC algorithm
    Saraiva, Erlandson F.
    Louzada, Francisco
    Milan, Luis
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 244 : 959 - 975