Adaptive finite element method for optimal control problems

被引:0
作者
Yan, Ningning [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
来源
2006 CHINESE CONTROL CONFERENCE, VOLS 1-5 | 2006年
关键词
optimal control problems; adaptive finite element approximation; a posteriori error estimator;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we provide the finite element method with multi-set adaptive meshes and multi-set base functions in developing efficient algorithms for constrained optimal control problems. We derive equivalent a posteriori error estimators of recovery type for both the state and the control approximation, which particularly suit a multi-set adaptive finite element scheme. We then propose a simple and yet efficient adaptive finite element algorithm, which is able to solve constrained control problems efficiently. Numerical results demonstrating our theoretical results are also presented in this paper.
引用
收藏
页码:1781 / 1784
页数:4
相关论文
共 7 条
[1]   Adaptive finite element methods for optimal control of partial differential equations: Basic concept [J].
Becker, R ;
Kapp, H ;
Rannacher, R .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 39 (01) :113-132
[2]  
HUANG Y, IN PRESS SIAM J CONT
[3]  
LI R, IN PRESS POSTERIORI
[4]  
Lions J.-L., 1971, OPTIMAL CONTROL SYST
[5]   A posteriori error estimates for convex boundary control problems [J].
Liu, WB ;
Yan, NN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (01) :73-99
[6]  
Verfurth R., 1996, A review of a posteriori error estimation and adaptive-mesh-refinement techniques
[7]   THE SUPERCONVERGENT PATCH RECOVERY AND A-POSTERIORI ERROR-ESTIMATES .1. THE RECOVERY TECHNIQUE [J].
ZIENKIEWICZ, OC ;
ZHU, JZ .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1992, 33 (07) :1331-1364