Relaxation and controllability in optimal control problems

被引:6
作者
Avakov, E. R. [1 ,2 ]
Magaril-Il'yaev, G. G. [3 ,4 ,5 ]
机构
[1] Russian Acad Sci, Inst Control Sci, Moscow, Russia
[2] Moscow MV Lomonosov State Univ, Moscow, Russia
[3] Moscow MV Lomonosov State Univ, Fac Mech & Math, Moscow, Russia
[4] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow, Russia
[5] Russian Acad Sci, South Math Inst, Vladikavkaz Sci Ctr, Vladikavkaz, Russia
基金
俄罗斯基础研究基金会;
关键词
optimal control; Pontryagin maximum principle; controllability; regularity; relaxation; mix of controls;
D O I
10.1070/SM8721
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper is concerned with the relationships between necessary minimum conditions in an optimal control problem, minimum conditions in the corresponding relaxed problem and sufficient conditions for local controllability of the system. The results obtained are applied to a fairly general optimal control problem.
引用
收藏
页码:585 / 619
页数:35
相关论文
共 50 条
[21]   Solving optimal control problems with terminal complementarity constraints via Scholtes' relaxation scheme [J].
Benita, Francisco ;
Mehlitz, Patrick .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2019, 72 (02) :413-430
[22]   Solving optimal control problems with terminal complementarity constraints via Scholtes’ relaxation scheme [J].
Francisco Benita ;
Patrick Mehlitz .
Computational Optimization and Applications, 2019, 72 :413-430
[23]   CONTROLLABILITY AND OPTIMAL-CONTROL IN NONLINEAR-SYSTEMS [J].
AYSAGALIYEV, SA .
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 1994, 32 (05) :73-79
[24]   Optimal Control and Controllability of a Phase Field System with One Control Force [J].
Araruna, F. D. ;
Boldrini, J. L. ;
Calsavara, B. M. R. .
APPLIED MATHEMATICS AND OPTIMIZATION, 2014, 70 (03) :539-563
[25]   Optimal Control and Controllability of a Phase Field System with One Control Force [J].
F. D. Araruna ;
J. L. Boldrini ;
B. M. R. Calsavara .
Applied Mathematics & Optimization, 2014, 70 :539-563
[26]   Convex Hull Relaxation of Optimal Control Problems With General Nonconvex Control Constraints [J].
Yang, Runqiu ;
Liu, Xinfu .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (06) :4028-4034
[27]   Regulator Problems on Unbounded Domains Stationarity-Optimal Control-Asymptotic Controllability [J].
Pickenhain, Sabine ;
Burtchen, Angie .
VIETNAM JOURNAL OF MATHEMATICS, 2018, 46 (04) :837-861
[28]   RELAXATION IN NONCONVEX OPTIMAL CONTROL PROBLEMS CONTAINING THE DIFFERENCE OF TWO SUBDIFFERENTIALS [J].
Tolstonogov, Alexander A. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2016, 54 (01) :175-197
[29]   Relaxation of Optimal Control Problems Involving Time Dependent Subdifferential Operators [J].
Saidi, S. ;
Thibault, L. ;
Yarou, M. .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2013, 34 (10) :1156-1186
[30]   Relaxation in nonconvex optimal control problems described by fractional differential equations [J].
Liu, Xiaoyou ;
Liu, Zhenhai ;
Fu, Xi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 409 (01) :446-458