Relaxation and controllability in optimal control problems

被引:5
|
作者
Avakov, E. R. [1 ,2 ]
Magaril-Il'yaev, G. G. [3 ,4 ,5 ]
机构
[1] Russian Acad Sci, Inst Control Sci, Moscow, Russia
[2] Moscow MV Lomonosov State Univ, Moscow, Russia
[3] Moscow MV Lomonosov State Univ, Fac Mech & Math, Moscow, Russia
[4] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow, Russia
[5] Russian Acad Sci, South Math Inst, Vladikavkaz Sci Ctr, Vladikavkaz, Russia
基金
俄罗斯基础研究基金会;
关键词
optimal control; Pontryagin maximum principle; controllability; regularity; relaxation; mix of controls;
D O I
10.1070/SM8721
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper is concerned with the relationships between necessary minimum conditions in an optimal control problem, minimum conditions in the corresponding relaxed problem and sufficient conditions for local controllability of the system. The results obtained are applied to a fairly general optimal control problem.
引用
收藏
页码:585 / 619
页数:35
相关论文
共 50 条
  • [1] ON THE LOCAL CONTROLLABILITY FOR OPTIMAL CONTROL PROBLEMS
    Arutyunov, A. V.
    Zhukovskiy, S. E.
    MATEMATICKI VESNIK, 2024, 76 (1-2): : 56 - 65
  • [2] Implicit Function. Controllability and Perturbation of Optimal Control Problems
    Avakov, E. R.
    Magaril-Il'yaev, G. G.
    MATHEMATICAL NOTES, 2021, 109 (3-4) : 503 - 516
  • [3] Convex Relaxation for Optimal Distributed Control Problems
    Fazelnia, Ghazal
    Madani, Ramtin
    Kalbat, Abdulrahman
    Lavaei, Javad
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (01) : 206 - 221
  • [4] Implicit Function. Controllability and Perturbation of Optimal Control Problems
    E. R. Avakov
    G. G. Magaril-Il’yaev
    Mathematical Notes, 2021, 109 : 503 - 516
  • [5] Normality, Controllability and Properness in Optimal Control
    Cortez, Karla L.
    Rosenblueth, Javier F.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (SUPPL 1) : S159 - S173
  • [6] Normality, Controllability and Properness in Optimal Control
    Karla L. Cortez
    Javier F. Rosenblueth
    Applied Mathematics & Optimization, 2021, 84 : 159 - 173
  • [7] RELAXATION IN NONCONVEX OPTIMAL CONTROL PROBLEMS FOR NONAUTONOMOUS FRACTIONAL EVOLUTION EQUATIONS
    Li, Xiuwen
    Liu, Zhenhai
    PACIFIC JOURNAL OF OPTIMIZATION, 2017, 13 (03): : 443 - 462
  • [8] RELAXATION IN NONCONVEX OPTIMAL CONTROL PROBLEMS FOR NONAUTONOMOUS FRACTIONAL EVOLUTION EQUATIONS
    Li, Xiuwen
    Liu, Zhenhai
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2017, 18 (09) : 1665 - 1684
  • [9] Numerical approximations of exact controllability problems by optimal control problems for parabolic differential equations
    Cao, YZ
    APPLIED MATHEMATICS AND COMPUTATION, 2001, 119 (2-3) : 127 - 145
  • [10] Finite codimensional controllability and optimal control problems with endpoint state constraints
    Liu, Xu
    Lu, Qi
    Zhang, Xu
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 138 : 164 - 203