Chromosome Painting in Callicebus nigrifrons Provides Insights into the Genome Evolution of Titi Monkeys and the Ancestral Callicebinae Karyotype

被引:1
作者
Araujo, Naiara Pereira [1 ]
do Espirito Santo, Alice Alves [1 ]
Pereira, Valeria do Socorro [2 ]
Stanyon, Roscoe [3 ]
Svartman, Marta [1 ]
机构
[1] Univ Fed Minas Gerais, Inst Ciencias Biol, Dept Biol Geral, Lab Citogenom Evolut, Belo Horizonte, MG, Brazil
[2] Fundacao Zoo Bot Belo Horizonte, Belo Horizonte, MG, Brazil
[3] Univ Florence, Dept Evolutionary Biol, Florence, Italy
关键词
Banding patterns; Chromosome rearrangements; Comparative molecular cytogenetics; Platyrrhini; IN-SITU HYBRIDIZATION; DIPLOID NUMBER 2N=16; GENUS CALLICEBUS; PRIMATES; CEBIDAE; PLATYRRHINI; PERSONATUS; MOLOCH; ORIGIN; LUGENS;
D O I
10.1159/000458748
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
We studied the chromosomes of Callicebus nigrifrons with conventional and molecular cytogenetic methods. Our chromosome painting analysis in C. nigrifrons together with previous reports allowed us to hypothesize an ancestral Callicebinae karyotype with 2n = 48. The associations of human chromosomes (HSA) 2/22, 7/15, 10/11, and the inverted HSA2/16 would link Callicebus, Cheracebus, and Plecturocebus and would thus be present in the ancestral Callicebinae karyotype. Four fusions (HSA1b/1c, 3c/8b, 13/20, and 14/15/3/21) and 1 fission (HSA2/22) are synapomorphies of Callicebus. The associations HSA3/15 and HSA3/9 are chromosome features linking Callicebus and Cheracebus, where-as the association HSA13/17 would represent a link between Callicebus and the moloch group (Plecturocebus). Only 6 of the 33 recognized titi monkey species have now been painted with human chromosome-specific probes. Further analyses are needed to clarify the phylogenomic relationships in this species-rich group. (C) 2017 S. Karger AG, Basel
引用
收藏
页码:82 / 88
页数:7
相关论文
共 21 条
  • [11] Genomic Mapping of Human Chromosome Paints on the Threatened Masked Titi Monkey (Callicebus personatus)
    Rodrigues, L. R. R.
    Pieczarka, J. C.
    Pissinati, A.
    de Oliveira, E. H. C.
    das Dores Rissino, J.
    Nagamachi, C. Y.
    [J]. CYTOGENETIC AND GENOME RESEARCH, 2011, 133 (01) : 1 - 7
  • [12] Rodrigues LRR, 2001, CYTOBIOS, V105, P137
  • [13] Telomeric repeats far from the ends: mechanisms of origin and role in evolution
    Ruiz-Herrera, A.
    Nergadze, S. G.
    Santagostino, M.
    Giulotto, E.
    [J]. CYTOGENETIC AND GENOME RESEARCH, 2008, 122 (3-4) : 219 - 228
  • [14] DIVERGENCE BETWEEN BIOCHEMICAL AND CYTOGENETIC DIFFERENCES IN 3 SPECIES OF THE CALLICEBUS-MOLOCH GROUP
    SCHNEIDER, H
    SCHNEIDER, MPC
    SAMPAIO, MIC
    MONTOYA, E
    TAPIA, J
    ENCARNACION, F
    ANSELMO, NP
    SALZANO, FM
    [J]. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, 1993, 90 (03) : 345 - 350
  • [15] SEABRIGH.M, 1971, LANCET, V2, P971
  • [16] HIGH-RESOLUTION CHROMOSOMES OF RHESUS MACAQUES (MACACA-MULATTA)
    SMALL, MF
    STANYON, R
    SMITH, DG
    SINEO, L
    [J]. AMERICAN JOURNAL OF PRIMATOLOGY, 1985, 9 (01) : 63 - 67
  • [17] Chromosome painting in Callicebus lugens, the species with the lowest diploid number (2n=16) known in primates
    Stanyon, R
    Bonvicino, CR
    Svartman, M
    Seuánez, HN
    [J]. CHROMOSOMA, 2003, 112 (04) : 201 - 206
  • [18] Stanyon R, 2000, AM J PRIMATOL, V50, P95, DOI 10.1002/(SICI)1098-2345(200002)50:2<95::AID-AJP1>3.0.CO
  • [19] 2-8
  • [20] SIMPLE TECHNIQUE FOR DEMONSTRATING CENTROMERIC HETEROCHROMATIN
    SUMNER, AT
    [J]. EXPERIMENTAL CELL RESEARCH, 1972, 75 (01) : 304 - &