Probing quasi-integrability of the Gross-Pitaevskii equation in a harmonic-oscillator potential

被引:19
作者
Bland, T. [1 ]
Parker, N. G. [1 ]
Proukakis, N. P. [1 ]
Malomed, B. A. [2 ,3 ]
机构
[1] Newcastle Univ, Sch Math Stat & Phys, Joint Quantum Ctr Durham Newcastle, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[2] Tel Aviv Univ, Fac Engn, Sch Elect Engn, Dept Phys Elect, IL-69978 Tel Aviv, Israel
[3] ITMO Univ, St Petersburg 197101, Russia
基金
英国工程与自然科学研究理事会; 以色列科学基金会;
关键词
dark soliton; integrability; Gross-Pitaevskii equation; Bose-Einstein condensate; sound waves; phonons; Galerkin approximation; BOSE-EINSTEIN CONDENSATE; DARK SOLITONS; DYNAMICS; WAVES; INSTABILITY; COHERENCE; MOTION;
D O I
10.1088/1361-6455/aae0ba
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Previous simulations of the one-dimensional Gross-Pitaevskii equation (GPE). with repulsive nonlinearity and a harmonic-oscillator trapping potential hint towards the emergence of quasi-integrable dynamics-in the sense of quasi-periodic evolution of a moving dark soliton without any signs of ergodicity-although this model does not belong to the list of integrable equations. To investigate this problem, we replace the full GPE by a suitably truncated expansion over harmonic-oscillator eigenmodes (the Galerkin approximation), which accurately reproduces the full dynamics, and then analyze the system's dynamical spectrum. The analysis enables us to interpret the observed quasi-integrability as the fact that the finite-mode dynamics always produces a quasi-discrete power spectrum, with no visible continuous component, the presence of the latter being a necessary manifestation of ergodicity. This conclusion remains true when a strong random-field component is added to the initial conditions. On the other hand, the same analysis for the GPE in an infinitely deep potential box leads to a clearly continuous power spectrum, typical for ergodic dynamics.
引用
收藏
页数:12
相关论文
共 97 条
[1]   Ground states and vortices of matter-wave condensates and optical guided waves -: art. no. 026611 [J].
Alexander, TJ ;
Bergé, L .
PHYSICAL REVIEW E, 2002, 65 (02)
[2]   Long-range sound-mediated dark-soliton interactions in trapped atomic condensates [J].
Allen, A. J. ;
Jackson, D. P. ;
Barenghi, C. F. ;
Proukakis, N. P. .
PHYSICAL REVIEW A, 2011, 83 (01)
[3]   VARIATIONAL APPROACH TO NON-LINEAR PULSE-PROPAGATION IN OPTICAL FIBERS [J].
ANDERSON, D .
PHYSICAL REVIEW A, 1983, 27 (06) :3135-3145
[4]  
[Anonymous], 2013, Mathematical methods of classical mechanics
[5]  
[Anonymous], 2002, TEXTS APPL MATH
[6]   Brownian motion of solitons in a Bose-Einstein condensate [J].
Aycock, Lauren M. ;
Hurst, Hilary M. ;
Efimkin, Dmitry K. ;
Genkina, Dina ;
Lu, Hsin-I ;
Galitski, Victor M. ;
Spielman, I. B. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (10) :2503-2508
[7]  
Barenghi C. F., 2017, A Primer on Quantum Fluids
[8]  
Barenghi CF., 2016, A Primer on Quantum Fluids
[9]   Wave collapse in physics: principles and applications to light and plasma waves [J].
Berge, L .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 303 (5-6) :259-370
[10]  
Bikbaev R F, 1989, MAT ZAMETKI, V5, P3