Harmonic typically real mappings

被引:9
作者
Bshouty, D [1 ]
Hengartner, W [1 ]
Hossian, O [1 ]
机构
[1] UNIV LAVAL,QUEBEC CITY,PQ,CANADA
关键词
D O I
10.1017/S030500410007451X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an example of a univalent orientation-preserving harmonic mapping f = h + (g) over bar defined on the unit disc U which is real on the real axis, satisfies h'(0) + (<(g'(0))over bar>) > 0 and is not typically real. Furthermore, we give a geometric characterization for univalent, harmonic and typically real mappings.
引用
收藏
页码:673 / 680
页数:8
相关论文
共 9 条
[1]  
BERS L, 1953, UNPUB LECTURE NOTES
[2]  
BOYARSKII BV, 1957, MAT SBORNIK, V43, P451
[3]  
BSHOUTY D, 1988, NUMER MATH, V54, P167, DOI 10.1007/BF01396972
[4]  
Bshouty D., 1993, Complex Variables, V21, P159
[5]  
Carleman T, 1933, CR HEBD ACAD SCI, V197, P471
[6]  
CLUNIE J, 1984, ANN ACAD SCI FENN-M, V9, P3
[7]   MAPPING BY PARA-REGULAR FUNCTIONS [J].
GERGEN, JJ ;
DRESSEL, FG .
DUKE MATHEMATICAL JOURNAL, 1951, 18 (01) :185-210
[8]   UNIQUENESS FOR P-REGULAR MAPPING [J].
GERGEN, JJ ;
DRESSEL, FG .
DUKE MATHEMATICAL JOURNAL, 1952, 19 (03) :435-444
[9]  
HENGARTNER W, 1986, J LOND MATH SOC, V33, P473