Composite Fe3O4-MXene-Carbon Nanotube Electrodes for Supercapacitors Prepared Using the New Colloidal Method

被引:14
作者
Liang, Wenyu [1 ]
Zhitomirsky, Igor [1 ]
机构
[1] McMaster Univ, Dept Mat Sci & Engn, Hamilton, ON L8S 4L7, Canada
关键词
iron oxide; MXene; supercapacitor; electrode; dispersion; composite; carbon nanotube; 2-DIMENSIONAL TITANIUM CARBIDE; COATED CARBON NANOTUBES; ELECTROCHEMICAL PERFORMANCE; TI3C2TX MXENE; ELECTROPHORETIC DEPOSITION; HIERARCHICAL ARCHITECTURE; NITROGEN; MNO2; EXFOLIATION; CAPACITANCE;
D O I
10.3390/ma14112930
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
MXenes, such as Ti3C2Tx, are promising materials for electrodes of supercapacitors (SCs). Colloidal techniques have potential for the fabrication of advanced Ti3C2Tx composites with high areal capacitance (C-S). This paper reports the fabrication of Ti3C2TX-Fe3O4-multiwalled carbon nanotube (CNT) electrodes, which show C-S of 5.52 F cm(-2) in the negative potential range in 0.5 M Na2SO4 electrolyte. Good capacitive performance is achieved at a mass loading of 35 mg cm(-2) due to the use of Celestine blue (CB) as a co-dispersant for individual materials. The mechanisms of CB adsorption on Ti3C2TX, Fe3O4, and CNTs and their electrostatic co-dispersion are discussed. The comparison of the capacitive behavior of Ti3C2TX-Fe3O4-CNT electrodes with Ti3C2TX-CNT and Fe3O4-CNT electrodes for the same active mass, electrode thickness and CNT content reveals a synergistic effect of the individual capacitive materials, which is observed due to the use of CB. The high C-S of Ti3C2TX-Fe3O4-CNT composites makes them promising materials for application in negative electrodes of asymmetric SC devices.
引用
收藏
页数:11
相关论文
共 65 条
[1]   2D metal carbides and nitrides (MXenes) for energy storage [J].
Anasori, Babak ;
Lukatskaya, Maria R. ;
Gogotsi, Yury .
NATURE REVIEWS MATERIALS, 2017, 2 (02)
[2]   A review of new methods of surface chemical modification, dispersion and electrophoretic deposition of metal oxide particles [J].
Ata, M. S. ;
Liu, Y. ;
Zhitomirsky, I. .
RSC ADVANCES, 2014, 4 (43) :22716-22732
[3]   New developments in non-covalent surface modification, dispersion and electrophoretic deposition of carbon nanotubes [J].
Ata, Mustafa S. ;
Poon, Ryan ;
Syed, Aseeb M. ;
Milne, Jordan ;
Zhitomirsky, Igor .
CARBON, 2018, 130 :584-598
[4]   Preparation and electrochemical performance of modified Ti3C2Tx/polypyrrole composites [J].
Cao, J. ;
Han, Y. ;
Zheng, X. ;
Wang, Q. .
JOURNAL OF APPLIED POLYMER SCIENCE, 2019, 136 (04)
[5]   Integrated paper electrodes derived from cotton stalks for high-performance flexible supercapacitors [J].
Chen, Jizhang ;
Fang, Kaili ;
Chen, Qiongyu ;
Xu, Junling ;
Wong, Ching-Ping .
NANO ENERGY, 2018, 53 :337-344
[6]   The Development of Pseudocapacitor Electrodes and Devices with High Active Mass Loading [J].
Chen, Ri ;
Yu, Miao ;
Sahu, Rakesh P. ;
Puri, Ishwar K. ;
Zhitomirsky, Igor .
ADVANCED ENERGY MATERIALS, 2020, 10 (20)
[7]  
Dong W, 2000, ELECTROCHEM SOLID ST, V3, P457
[8]   Electrochemical properties of vanadium oxide aerogels [J].
Dong, Winny ;
Sakamoto, Jeffrey S. ;
Dunn, Bruce .
SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2003, 4 (01) :3-11
[9]   Electrochemical performance of Ti3C2 supercapacitors in KOH electrolyte [J].
Gao, Yupeng ;
Wang, Libo ;
Li, Zhengyang ;
Zhang, Yafei ;
Xing, Baolin ;
Zhang, Chuanxiang ;
Zhou, Aiguo .
JOURNAL OF ADVANCED CERAMICS, 2015, 4 (02) :130-134
[10]   Asymmetric supercapacitors based on 3D graphene-wrapped V2O5 nanospheres and Fe3O4@3D graphene electrodes with high power and energy densities [J].
Ghaly, Hossam A. ;
El-Deen, Ahmed G. ;
Souaya, Eglal R. ;
Allam, Nageh K. .
ELECTROCHIMICA ACTA, 2019, 310 :58-69