Air superhydrophilic-superoleophobic SiO2-based coatings for recoverable oil/water separation mesh with high flux and mechanical stability

被引:70
|
作者
Xiong, Wei [1 ]
Li, Ling [1 ]
Qiao, Fen [2 ]
Chen, Junwu [3 ]
Chen, Zhi [4 ]
Zhou, Xuedong [1 ]
Hu, Kaiwen [1 ]
Zhao, Xiujian [1 ]
Xie, Yi [1 ]
机构
[1] Wuhan Univ Technol, State Key Lab Silicate Mat Architectures, 122 Luoshi Rd, Wuhan 430070, Peoples R China
[2] Jiangsu Univ, Sch Energy & Power Engn, 301 Xuefu Rd, Zhenjiang 212013, Jiangsu, Peoples R China
[3] Huazhong Univ Sci & Technol, State Key Lab Adv Electromagnet Engn & Technol, 1037 Luoyu Rd, Wuhan, Peoples R China
[4] Wuhan Shuneng New Mat Co LTD, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Air superhydrophilicity-superoleophobicity; Coatings; Oil/water separation; Mechanical stability; NANOFIBROUS MEMBRANE; COATED MESH; EMULSION; FABRICATION; STRATEGY; FOAM;
D O I
10.1016/j.jcis.2021.05.004
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Due to the inherent differences in surface tension between water and oil, it is a challenge to fabricate air superhydrophilic-superoleophobic materials despite their promising potential in the field of oil/water separation. Herein, a facile approach is developed to fabricate air superhydrophilic-superoleophobic SiO2 coating by combination of controllable modifying SiO2 nanoparticle surface by both hydrophilic groups (i.e., -OH groups) and oleophobic groups (i.e., fluorinated groups) with constructing porous and hierarchical structures. Hydroxyl-modified SiO2 nanoparticles (NPs) are synthesized using a base-catalysed procedure in the presence of ammonia or NaOH. Chitosan quaternary ammonium salt (HACC) is introduced to bind SiO2 by forming a unique hydrogen bond between HACC and -OH, followed by adding pentadecafluorooctanoic acid (PFOA) to complex with HACC to form fluorinated groups. The SiO2 coatings are fabricated on various substrates (e.g., glass, foam and Cu mesh) by spraying procedure and characterized using SEM, FTIR, XPS, etc. The contact angles of oils (e.g., pump oil, castor oil, corn oil, hexadecane and bean oil) and water on the coatings are over 150 degrees and close to 0 degrees, respectively. By opti-mization, the representative SiO2-coated Cu mesh displayed high-efficiency of 99.2% in separating water from mixture of water/pump oil, and high penetration flux of 1.41 x 10(4) L.m(-2)h(-1). Besides, the coating maintains its superhydrophilic-superoleophobic properties even after 110 cycles of sandpaper abrasion or after being immersed in water for 3 h. After 20 cycles of oil/water separation, the coating retains separation efficiency up to 97.93%. This study provides a new and universal protocol to fabricate unique superwetting surfaces with effective oil/water separation performance, long-term durability and outstanding reusability. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:118 / 126
页数:9
相关论文
共 50 条
  • [1] Superhydrophilic and superoleophobic chitosan-based nanocomposite coatings for oil/water separation
    Yang, Jin
    Song, Haojie
    Yan, Xuehua
    Tang, Hua
    Li, Changsheng
    CELLULOSE, 2014, 21 (03) : 1851 - 1857
  • [2] A robust copper mesh-based superhydrophilic/superoleophobic composite for high-flux oil-water separation
    Li, Ruhui
    Yu, Ruobing
    Fan, Junhan
    Chang, Bu
    JOURNAL OF MATERIALS SCIENCE, 2023, 58 (27) : 11044 - 11061
  • [3] PVA/SiO2-coated stainless steel mesh with superhydrophilic-underwater superoleophobic for efficient oil-water separation
    Zhang, Xinying
    Wang, Chaoqun
    Liu, Xiaoyan
    Wang, Jinhua
    Zhang, Chenying
    Wen, Yuling
    DESALINATION AND WATER TREATMENT, 2018, 126 : 157 - 163
  • [4] Fabrication of a superhydrophilic/underwater superoleophobic stainless steel mesh for oil/water separation with ultrahigh flux
    Jiawei Wang
    Jie Hu
    Junjie Cheng
    Zefei Huang
    Baoqian Ye
    Frontiers of Chemical Science and Engineering, 2023, 17 : 46 - 55
  • [5] Fabrication of a superhydrophilic/underwater superoleophobic stainless steel mesh for oil/water separation with ultrahigh flux
    Jiawei Wang
    Jie Hu
    Junjie Cheng
    Zefei Huang
    Baoqian Ye
    Frontiers of Chemical Science and Engineering, 2023, 17 (01) : 46 - 55
  • [6] Fabrication of a superhydrophilic/underwater superoleophobic stainless steel mesh for oil/water separation with ultrahigh flux
    Wang, Jiawei
    Hu, Jie
    Cheng, Junjie
    Huang, Zefei
    Ye, Baoqian
    FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING, 2023, 17 (01) : 46 - 55
  • [7] Superhydrophilic and superoleophobic chitosan-based nanocomposite coatings for oil/water separation
    Jin Yang
    Haojie Song
    Xuehua Yan
    Hua Tang
    Changsheng Li
    Cellulose, 2014, 21 : 1851 - 1857
  • [8] Fast-response, no-pretreatment, and robustness air-water/oil amphibious superhydrophilic-superoleophobic surface for oil/water separation and oil-repellent fabrics
    Li, Xiaochen
    Peng, Ying
    Zhang, Fengfan
    Yang, Zihao
    Dong, Zhaoxia
    CHEMICAL ENGINEERING JOURNAL, 2022, 427
  • [9] Micro/Nanoscale Structured Superhydrophilic and Underwater Superoleophobic Hybrid-Coated Mesh for High-Efficiency Oil/Water Separation
    Yuan, Teng
    Yin, Jian
    Liu, Yingling
    Tu, Weiping
    Yang, Zhuohong
    POLYMERS, 2020, 12 (06)
  • [10] Low-cost and high-stability superhydrophilic/underwater superoleophobic NaA zeolite/copper mesh composite membranes for oil/water separation
    Pan, Jinkang
    Ge, Yuanyuan
    SURFACES AND INTERFACES, 2023, 37