GLOBAL-IN-TIME STRICHARTZ ESTIMATES ON NONTRAPPING, ASYMPTOTICALLY CONIC MANIFOLDS

被引:22
作者
Hassell, Andrew [1 ]
Zhang, Junyong [1 ,2 ]
机构
[1] Australian Natl Univ, Dept Math, Canberra, ACT 2601, Australia
[2] Beijing Inst Technol, Dept Math, Beijing 100081, Peoples R China
基金
澳大利亚研究理事会; 北京市自然科学基金; 中国国家自然科学基金;
关键词
Strichartz estimates; asymptotically conic manifolds; spectral measure; Schrodinger propagator; SCHRODINGER-EQUATION; SCATTERING-THEORY; LOW-ENERGY; RESOLVENT; WAVE; INEQUALITIES; RESTRICTION; PROPAGATOR; OPERATORS; DECAY;
D O I
10.2140/apde.2016.9.151
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove global-in-time Strichartz estimates without loss of derivatives for the solution of the Schrodinger equation on a class of nontrapping asymptotically conic manifolds. We obtain estimates for the full set of admissible indices, including the endpoint, in both the homogeneous and inhomogeneous cases. This result improves on the results by Tao, Wunsch and the first author and by Mizutani, which are local in time, as well as results of the second author, which are global in time but with a loss of angular derivatives. In addition, the endpoint inhomogeneous estimate is a strengthened version of the uniform Sobolev estimate recently proved by Guillarmou and the first author. The second author has proved similar results for the wave equation.
引用
收藏
页码:151 / 192
页数:42
相关论文
共 43 条
[1]   On Strichartz estimates for Schrodinger operators in compact manifolds with boundary [J].
Blair, Matthew D. ;
Smith, Hart F. ;
Sogge, Christopher D. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (01) :247-256
[2]   Strichartz Estimates for the Schrodinger Equation on Polygonal Domains [J].
Blair, Matthew D. ;
Ford, G. Austin ;
Herr, Sebastian ;
Marzuola, Jeremy L. .
JOURNAL OF GEOMETRIC ANALYSIS, 2012, 22 (02) :339-351
[3]   Strichartz estimates for the wave equation on manifolds with boundary [J].
Blair, Matthew D. ;
Smith, Hart F. ;
Sogge, Christopher D. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (05) :1817-1829
[4]   On global Strichartz estimates for non-trapping metrics [J].
Bouclet, Jean-Marc ;
Tzvetkov, Nikolay .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (06) :1661-1682
[5]   Strichartz estimates for long range perturbations [J].
Bouclet, Jean-Marc ;
Tzvetkov, Nikolay .
AMERICAN JOURNAL OF MATHEMATICS, 2007, 129 (06) :1565-1609
[6]   STRICHARTZ ESTIMATES ON ASYMPTOTICALLY HYPERBOLIC MANIFOLDS [J].
Bouclet, Jean-Marc .
ANALYSIS & PDE, 2011, 4 (01) :1-84
[7]  
Bouclet JM, 2010, B SOC MATH FR, V138, P1
[8]  
Bourgain J., 1999, AM MATH SOC C PUBLIC, V46
[9]   Strichartz inequalities and the nonlinear Schrodinger equation on compact manifolds [J].
Burq, N ;
Gérard, P ;
Tzvetkov, N .
AMERICAN JOURNAL OF MATHEMATICS, 2004, 126 (03) :569-605
[10]  
Burq N, 2004, INDIANA U MATH J, V53, P1665