Resuming elective surgery after COVID-19: A simulation modelling framework for guiding the phased opening of operating rooms

被引:12
作者
Abdullah, Hairil Rizal [1 ,2 ,3 ,5 ]
Lam, Sean Shao Wei [1 ,2 ,3 ,4 ,10 ]
Ang, Boon Yew [1 ,2 ,3 ]
Pourghaderi, Ahmadreza [1 ,2 ,3 ]
Nguyen, Francis Ngoc Hoang Long [1 ,2 ,3 ]
Matchar, David Bruce [1 ,2 ,3 ,6 ,7 ]
Tan, Hiang Khoon [8 ,9 ,10 ]
Ong, Marcus Eng Hock [1 ,2 ,3 ,11 ]
机构
[1] Duke NUS Med Sch, Hlth Serv & Syst Res, Singapore, Singapore
[2] Singapore Hlth Serv, Hlth Serv Res Ctr, Singapore, Singapore
[3] SingHlth Duke NUS Acad Med Ctr, Hlth Serv Res Inst, Singapore, Singapore
[4] Singapore Management Univ, Lee Kong Chian Sch Business, Singapore, Singapore
[5] Singapore Gen Hosp, Dept Anesthesiol, Singapore Outram Rd, Singapore 169608, Singapore
[6] Duke Univ, Dept Internal Med, Durham, NC 27706 USA
[7] Duke Univ, Duke Ctr Clin Hlth Policy Res, Durham, NC 27706 USA
[8] SingHlth Duke NUS Acad Med Ctr, Surg Acad Program, Singapore, Singapore
[9] Singapore Gen Hosp, Div Surg & Surg Oncol, Singapore, Singapore
[10] Singapore Hlth Serv, SingHlth Duke NUS Global Hlth Inst, Singapore, Singapore
[11] Singapore Gen Hosp, Dept Emergency Med, Singapore, Singapore
基金
英国医学研究理事会;
关键词
Healthcare resource allocation; Agile resource planning; OR resource management; Discrete events simulation; COVID-19;
D O I
10.1016/j.ijmedinf.2021.104665
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Objective: To develop a 2-stage discrete events simulation (DES) based framework for the evaluation of elective surgery cancellation strategies and resumption scenarios across multiple operational outcomes. Materials and Methods: Study data was derived from the data warehouse and domain knowledge on the operational process of the largest tertiary hospital in Singapore. 34,025 unique cases over 43 operating rooms (ORs) and 18 surgical disciplines performed from 1 January 2019 to 31 May 2020 were extracted for the study. A clustering approach was used in stage 1 of the modelling framework to develop the groups of surgeries that followed distinctive postponement patterns. These clusters were then used as inputs for stage 2 where the DES model was used to evaluate alternative phased resumption strategies considering the outcomes of OR utilization, waiting times to surgeries and the time to clear the backlogs. Results: The tool enabled us to understand the elective postponement patterns during the COVID-19 partial lockdown period, and evaluate the best phased resumption strategy. Differences in the performance measures were evaluated based on 95% confidence intervals. The results indicate that two of the gradual phased resumption strategies provided lower peak OR and bed utilizations but required a longer time to return to BAU levels. Minimum peak bed demands could also be reduced by approximately 14 beds daily with the gradual resumption strategy, whilst the maximum peak bed demands by approximately 8.2 beds. Peak OR utilization could be reduced to 92% for gradual resumption as compared to a minimum peak of 94.2% with the full resumption strategy. Conclusions: The 2-stage modelling framework coupled with a user-friendly visualization interface were key enablers for understanding the elective surgery postponement patterns during a partial lockdown phase. The DES model enabled the identification and evaluation of optimal phased resumption policies across multiple important operational outcome measures. Lay abstract: During the height of the COVID-19 pandemic, most healthcare systems suspended their non-urgent elective surgery services. This strategy was undertaken as a means to expand surge capacity, through the preservation of structural resources (such as operating theaters, ICU beds, and ventilators), consumables (such personal protective equipment and medications), and critical healthcare manpower. As a result, some patients had less-essential surgeries postponed due to the pandemic. As the first wave of the pandemic waned, there was an urgent need to quickly develop optimal strategies for the resumption of these surgeries. We developed a 2stage discrete events simulation (DES) framework based on 34,025 unique cases over 43 operating rooms (ORs) and 18 surgical disciplines performed from 1 January 2019 to 31 May 2020 captured in the Singapore General Hospital (SGH) enterprise data warehouse. The outcomes evaluated were OR utilization, waiting times to surgeries and time to clear the backlogs. A user-friendly visualization interface was developed to enable decision makers to determine the most promising surgery resumption strategy across these outcomes. Hospitals globally can make use of the modelling framework to adapt to their own surgical systems to evaluate strategies for postponement and resumption of elective surgeries.
引用
收藏
页数:12
相关论文
共 27 条
[1]  
[Anonymous], British Columbia, Ministry of Finance
[2]  
[Anonymous], COVID19 Temporary MBS Telehealth Services [Internet]. Canberra
[3]  
[Anonymous], JOINT STATEMENT ROAD
[4]  
[Anonymous], LOCAL RESUMPTION ELE
[5]  
[Anonymous], PYTHON LANGUAGE REFE
[6]  
[Anonymous], P 2018 WINTER SIMULA, DOI [10.5555/3320516.3321029, DOI 10.5555/3320516.3321029]
[7]   Surgery triage during theCOVID-19 pandemic [J].
Babidge, Wendy J. ;
Tivey, David R. ;
Kovoor, Joshua G. ;
Weidenbach, Kristin ;
Collinson, Trevor G. ;
Hewett, Peter J. ;
Hugh, Thomas J. ;
Padbury, Robert T. A. ;
Hill, Nicola M. ;
Maddern, Guy J. .
ANZ JOURNAL OF SURGERY, 2020, 90 (09) :1558-1565
[8]   Practical recommendations for gynecologic surgery during the COVID-19 pandemic [J].
Chiofalo, Benito ;
Baiocco, Ermelinda ;
Mancini, Emanuela ;
Vocaturo, Giuseppe ;
Cutillo, Giuseppe ;
Vincenzoni, Cristina ;
Bruni, Simone ;
Bruno, Valentina ;
Mancari, Rosanna ;
Vizza, Enrico .
INTERNATIONAL JOURNAL OF GYNECOLOGY & OBSTETRICS, 2020, 150 (02) :146-150
[9]   Resuming elective surgical services in times of COVID-19 infection [J].
Coimbra, Raul ;
Edwards, Sara ;
Coimbra, Bruno Cammarota ;
Tabuenca, Arnold .
TRAUMA SURGERY & ACUTE CARE OPEN, 2020, 5 (01)
[10]   Orthopaedic surgery after COVID-19-A blueprint for resuming elective surgery after a pandemic [J].
Ding, Benjamin Tze Keong ;
Tan, Kelvin ;
Oh, Jacob Yoong-Leong ;
Lee, Keng Thiam .
INTERNATIONAL JOURNAL OF SURGERY, 2020, 80 :162-167