Space-time mesh refinement for elastodynamics.: Numerical results

被引:19
作者
Bécache, E [1 ]
Joly, P [1 ]
Rodríguez, J [1 ]
机构
[1] Inst Natl Rech Informat & Automat, F-78153 Le Chesnay, France
关键词
space-time mesh refinement; elastodynamics;
D O I
10.1016/j.cma.2004.02.023
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose here a generalization to the elastodynamic equations of the space-time mesh refinement technique introduced in [Raffinement de maillage spatio-temporel pour les equations de Maxwell, Ph.D. thesis, Universite de Dauphine, Paris, 2000] for the Maxwell's equations. This method uses a discrete energy conservation to ensure the stability. The method is presented in a variational way applicable to other type of hyperbolic systems. Several numerical experiments are provided to show the efficiency of this approach. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:355 / 366
页数:12
相关论文
共 11 条
[1]   A new family of mixed finite elements for the linear elastodynamic problem [J].
Bécache, E ;
Joly, P ;
Tsogka, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (06) :2109-2132
[2]   Fictitious domains, mixed finite elements and perfectly matched layers for 2-D elastic wave propagation [J].
Bécache, E ;
Joly, P ;
Tsogka, C .
JOURNAL OF COMPUTATIONAL ACOUSTICS, 2001, 9 (03) :1175-1201
[3]  
Ben Belgacem F, 1999, NUMER MATH, V84, P173, DOI 10.1007/s002119900100
[4]  
Bernardi C., 1992, NONLINEAR PARTIAL DI, P13
[5]  
BUFFA A, 2001, SINUM, V39, P880
[6]   FDTD local grid with material traverse [J].
Chevalier, MW ;
Luebbers, RJ ;
Cable, VP .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1997, 45 (03) :411-421
[7]  
COHEN G, IN PRESS SIAM J SCI
[8]   A conservative space-time mesh refinement method for the 1-D wave equation. Part II: Analysis [J].
Collino, F ;
Fouquet, T ;
Joly, P .
NUMERISCHE MATHEMATIK, 2003, 95 (02) :223-251
[9]   A conservative space-time mesh refinement method for the 1-D wave equation. Part I: Construction [J].
Collino, F ;
Fouquet, T ;
Joly, P .
NUMERISCHE MATHEMATIK, 2003, 95 (02) :197-221
[10]  
FOUQUET T, 2000, THESIS U DEDAUPHINE