On split Lie superalgebras

被引:3
作者
Calderon Martin, Antonio J. [1 ]
Sanchez Delgado, Jose M. [1 ]
机构
[1] Univ Cadiz, Dept Matemat, Cadiz 11510, Spain
关键词
ALGEBRAS; SYSTEMS;
D O I
10.1063/1.3464265
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the structure of arbitrary split Lie superalgebras. We show that any of such superalgebras L is of the form L=U+Sigma(j)I(j) with U a subspace of the Abelian (graded) subalgebra H and any I(j), a well described (graded) ideal of L satisfying [I(j),I(k)]=0 if j not equal k. Under certain conditions, the simplicity of L is characterized and it is shown that L is the direct sum of the family of its minimal (graded) ideals, each one being a simple split Lie superalgebra. (C) 2010 American Institute of Physics. [doi:10.1063/1.3464265]
引用
收藏
页数:9
相关论文
共 50 条
[21]   WEYL MODULES FOR LIE SUPERALGEBRAS [J].
Calixto, Lucas ;
Lemay, Joel ;
Savage, Alistair .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (08) :3191-3207
[22]   On multipliers of pairs of Lie superalgebras [J].
Safa, Hesam .
QUAESTIONES MATHEMATICAE, 2022, 45 (12) :1909-1920
[23]   Lie Superalgebras of Differential Operators [J].
Grabowski, Janusz ;
Kotov, Alexei ;
Poncin, Norbert .
JOURNAL OF LIE THEORY, 2013, 23 (01) :35-54
[24]   ON REPRESENTATIONS OF RESTRICTED LIE SUPERALGEBRAS [J].
Yao, Yu-Feng .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2014, 64 (03) :845-856
[25]   Nonlinear realizations of Lie superalgebras [J].
Palmkvist, Jakob .
COMMUNICATIONS IN ALGEBRA, 2022, 50 (11) :4917-4936
[26]   Three Ideals of Lie Superalgebras [J].
Zhao, Xiaodong ;
Chen, Liangyun .
ALGEBRA COLLOQUIUM, 2022, 29 (01) :143-150
[27]   Contact and Frobenius Lie superalgebras [J].
Rodriguez-Vallarte, M. C. ;
Salgado, G. .
COMMUNICATIONS IN ALGEBRA, 2024, 52 (06) :2626-2648
[28]   STRUCTURE OF SYMPATHETIC LIE SUPERALGEBRAS [J].
Fan, Yusi ;
Yao, Chenrui ;
Chen, Liangyun .
ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (05) :2945-2957
[29]   δ-DERIVATIONS OF CLASSICAL LIE SUPERALGEBRAS [J].
Kaygorodov, I. B. .
SIBERIAN MATHEMATICAL JOURNAL, 2009, 50 (03) :434-449
[30]   Detecting capable Lie superalgebras [J].
Padhan, Rudra Narayan ;
Nayak, Saudamini ;
Pati, K. C. .
COMMUNICATIONS IN ALGEBRA, 2021, 49 (10) :4274-4290