On split Lie superalgebras

被引:3
作者
Calderon Martin, Antonio J. [1 ]
Sanchez Delgado, Jose M. [1 ]
机构
[1] Univ Cadiz, Dept Matemat, Cadiz 11510, Spain
关键词
ALGEBRAS; SYSTEMS;
D O I
10.1063/1.3464265
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the structure of arbitrary split Lie superalgebras. We show that any of such superalgebras L is of the form L=U+Sigma(j)I(j) with U a subspace of the Abelian (graded) subalgebra H and any I(j), a well described (graded) ideal of L satisfying [I(j),I(k)]=0 if j not equal k. Under certain conditions, the simplicity of L is characterized and it is shown that L is the direct sum of the family of its minimal (graded) ideals, each one being a simple split Lie superalgebra. (C) 2010 American Institute of Physics. [doi:10.1063/1.3464265]
引用
收藏
页数:9
相关论文
共 50 条
  • [1] On split regular BiHom-Lie superalgebras
    Zhang, Jian
    Chen, Liangyun
    Zhang, Chiping
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 128 : 38 - 47
  • [2] On split involutive regular BiHom-Lie superalgebras
    Guo, Shuangjian
    Zhang, Xiaohui
    Wang, Shengxiang
    OPEN MATHEMATICS, 2020, 18 : 476 - 485
  • [3] EXTENSIONS OF LIE SUPERALGEBRAS BY HEISENBERG LIE SUPERALGEBRAS
    Bai, Wei
    Liu, Wende
    COLLOQUIUM MATHEMATICUM, 2018, 153 (02) : 209 - 218
  • [4] Root Graded Lie Superalgebras
    Yousofzadeh, Malihe
    JOURNAL OF LIE THEORY, 2016, 26 (03) : 731 - 765
  • [5] Quadratic symplectic Lie superalgebras and Lie bi-superalgebras
    Barreiro, Elisabete
    Benayadi, Said
    JOURNAL OF ALGEBRA, 2009, 321 (02) : 582 - 608
  • [6] Intuitionistic Fuzzy Lie Sub-superalgebras and Ideals of Lie Superalgebras
    Chen, Wenjuan
    INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL SCIENCES AND OPTIMIZATION, VOL 2, PROCEEDINGS, 2009, : 841 - 845
  • [7] Jordan supersystems related to Lie superalgebras
    Garcia, Esther
    Gomez Lozano, Miguel
    Vera De Salas, Guillermo
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (03) : 992 - 1000
  • [8] Subideals of Lie superalgebras
    Siciliano, Salvatore
    Usefi, Hamid
    JOURNAL OF ALGEBRA, 2011, 332 (01) : 469 - 479
  • [9] ON (α, β, γ)-DERIVATIONS OF LIE SUPERALGEBRAS
    Zheng, Keli
    Zhang, Yongzheng
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2013, 10 (10)
  • [10] On (σ, τ)-derivations of Lie superalgebras
    Fan, Yusi
    Chen, Liangyun
    FILOMAT, 2023, 37 (01) : 179 - 192