Multicomponent lattice Boltzmann model from continuum kinetic theory

被引:28
|
作者
Shan, Xiaowen [1 ]
机构
[1] Exa Corp, Burlington, MA 01803 USA
来源
PHYSICAL REVIEW E | 2010年 / 81卷 / 04期
关键词
DERIVATION; DIFFUSION; FLOWS; GAS;
D O I
10.1103/PhysRevE.81.045701
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We derive from the continuum kinetic theory a multicomponent lattice Boltzmann model with intermolecular interaction. The resulting model is found to be consistent with the model previously derived from a lattice-gas cellular automaton [X. Shan and H. Chen, Phys. Rev. E 47, 1815 (1993)] but applies in a much broader domain. A number of important insights are gained from the kinetic theory perspective. First, it is shown that even in the isothermal case, the energy equipartition principle dictates the form of the equilibrium distribution function. Second, thermal diffusion is shown to exist and the corresponding diffusivities are given in terms of macroscopic parameters. Third, the ordinary diffusion is shown to satisfy the Maxwell-Stefan equation at the ideal-gas limit.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] A mean-field free energy lattice Boltzmann model for multicomponent fluids
    J. Zhang
    D. Y. Kwok
    The European Physical Journal Special Topics, 2009, 171 : 45 - 53
  • [42] From the Kinetic Theory of Gases to Continuum Mechanics
    Golse, Francois
    27TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS, 2010, PTS ONE AND TWO, 2011, 1333 : 15 - 27
  • [43] BOUNDARY CONDITIONS FOR KINETIC THEORY BASED MODELS I: LATTICE BOLTZMANN MODELS
    Zhao, Weifeng
    Huang, Juntao
    Yong, Wen-An
    MULTISCALE MODELING & SIMULATION, 2019, 17 (02): : 854 - 872
  • [44] Kinetic and Lattice Boltzmann schemes.
    Chetverushkin, BN
    Romanyukha, NY
    PARALLEL COMPUTATIONAL FLUID DYNAMICS: MULTIDISCIPLINARY APPLICATIONS, 2005, : 257 - 262
  • [45] Lattice Boltzmann method for gaseous microflows using kinetic theory boundary conditions
    Tang, GH
    Tao, WQ
    He, YL
    PHYSICS OF FLUIDS, 2005, 17 (05) : 1 - 4
  • [46] Multiple-relaxation-time lattice Boltzmann kinetic model for combustion
    Xu, Aiguo
    Lin, Chuandong
    Zhang, Guangcai
    Li, Yingjun
    PHYSICAL REVIEW E, 2015, 91 (04)
  • [47] Theory of the lattice Boltzmann method: Lattice Boltzmann models for nonideal gases
    Luo, LS
    PHYSICAL REVIEW E, 2000, 62 (04): : 4982 - 4996
  • [48] Multicomponent interparticle-potential lattice Boltzmann model for fluids with large viscosity ratios
    Porter, Mark L.
    Coon, E. T.
    Kang, Q.
    Moulton, J. D.
    Carey, J. W.
    PHYSICAL REVIEW E, 2012, 86 (03):
  • [49] Lattice Boltzmann pore-scale model for multicomponent reactive transport in porous media
    Kang, Qinjun
    Lichtner, Peter C.
    Zhang, Dongxiao
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2006, 111 (B5)
  • [50] Lattice Boltzmann model for diffusion-controlled dissolution of solid structures in multicomponent liquids
    Verhaeghe, F
    Arnout, S
    Blanpain, B
    Wollants, P
    PHYSICAL REVIEW E, 2005, 72 (03):