Centralizing additive maps on rank r block triangular matrices

被引:3
作者
Chooi, W. L. [1 ]
Mutalib, M. H. A. [1 ]
Tan, L. Y. [1 ,2 ]
机构
[1] Univ Malaya, Inst Math Sci, Kuala Lumpur, Malaysia
[2] Tunku Abdul Rahman Univ Coll, Dept Math Sci, Kuala Lumpur, Malaysia
来源
ACTA SCIENTIARUM MATHEMATICARUM | 2021年 / 87卷 / 1-2期
关键词
centralizing map; commuting map; block triangular matrix; rank; functional identity; COMMUTING MAPS; FUNCTIONAL IDENTITIES; DERIVATIONS; MAPPINGS; SUBSETS; RINGS;
D O I
10.14232/actasm-020-586-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a field and let k, n(1), ..., n(k) be positive integers with n(1) + ...+ n(k) = n >= 2. We denote by Tn(1), ..., n(k) a block triangular matrix algebra over F with unity I-n and center Z(Tn(1), ..., n(k)). Fixing an integer 1 < r <= n with r not equal n when vertical bar F vertical bar = 2, we prove that an additive map psi: Tn(1), ..., n(k) -> Tn(1), ..., n(k )satisfies psi(A)A - A psi(A) is an element of Z(TTn(1), ..., n(k)) for every rank r matrices A is an element of Tn(1), ..., n(k )if and only if there exist an additive map mu: Tn(1), ..., n(k) -> F and scalars lambda, alpha is an element of F, in which alpha not equal 0 only if r = n, n(1) = n(k) = 1 and vertical bar F vertical bar = 3, such that psi(A) = lambda A + mu(A)I-n + alpha(a(11) + a(nn))E-1n for all A = (a(ij)) is an element of T-n1, ..., n(k), where E-ij is an element of Tn(1), ..., n(k) is the matrix unit whose (i, j)th entry is one and zero elsewhere. Using this result, a complete structural characterization of commuting additive maps on rank s > 1 upper triangular matrices over an arbitrary field is addressed.
引用
收藏
页码:63 / 94
页数:32
相关论文
共 50 条
[31]   M-COMMUTING MAPS ON TRIANGULAR AND STRICTLY TRIANGULAR INFINITE MATRICES [J].
Siowik, Roksana ;
Ahmed, Driss Aiat Hadj .
ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2021, 37 :247-255
[32]   Commuting maps on invertible triangular matrices over F2 [J].
Chooi, Wai Leong ;
Kwa, Kiam Heong ;
Tan, Li Yin .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 583 :77-101
[33]   Additive maps on hermitian matrices [J].
Orel, M. ;
Kuzma, B. .
LINEAR & MULTILINEAR ALGEBRA, 2007, 55 (06) :599-617
[34]   LINEAR RANK PRESERVERS ON INFINITE TRIANGULAR MATRICES [J].
Slowik, Roksana .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (01) :73-88
[35]   ADDITIVE MAPS ON RANK K BIVECTORS [J].
Chooi, Wai Leong ;
Kwa, Kiam Heong .
ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2020, 36 :847-856
[36]   On regularity of block triangular fuzzy matrices [J].
Meenakshi Ar. .
Journal of Applied Mathematics and Computing, 2004, 16 (1-2) :207-220
[37]   Geometry of Rectangular Block Triangular Matrices [J].
Huang, Li Ping ;
Zou, Su Wen .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2009, 25 (12) :2035-2054
[38]   Commuting maps on rank-k matrices [J].
Franca, Willian .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (06) :2813-2815
[39]   COMMUTING MAPS ON RANK-K MATRICES [J].
Xu, Xiaowei ;
Yi, Xiaofei .
ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2014, 27 :735-741
[40]   ON THE INDEX OF BLOCK UPPER-TRIANGULAR MATRICES [J].
BRU, R ;
CLIMENT, JJ ;
NEUMANN, M .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1995, 16 (02) :436-447