Centralizing additive maps on rank r block triangular matrices

被引:2
|
作者
Chooi, W. L. [1 ]
Mutalib, M. H. A. [1 ]
Tan, L. Y. [1 ,2 ]
机构
[1] Univ Malaya, Inst Math Sci, Kuala Lumpur, Malaysia
[2] Tunku Abdul Rahman Univ Coll, Dept Math Sci, Kuala Lumpur, Malaysia
来源
ACTA SCIENTIARUM MATHEMATICARUM | 2021年 / 87卷 / 1-2期
关键词
centralizing map; commuting map; block triangular matrix; rank; functional identity; COMMUTING MAPS; FUNCTIONAL IDENTITIES; DERIVATIONS; MAPPINGS; SUBSETS; RINGS;
D O I
10.14232/actasm-020-586-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a field and let k, n(1), ..., n(k) be positive integers with n(1) + ...+ n(k) = n >= 2. We denote by Tn(1), ..., n(k) a block triangular matrix algebra over F with unity I-n and center Z(Tn(1), ..., n(k)). Fixing an integer 1 < r <= n with r not equal n when vertical bar F vertical bar = 2, we prove that an additive map psi: Tn(1), ..., n(k) -> Tn(1), ..., n(k )satisfies psi(A)A - A psi(A) is an element of Z(TTn(1), ..., n(k)) for every rank r matrices A is an element of Tn(1), ..., n(k )if and only if there exist an additive map mu: Tn(1), ..., n(k) -> F and scalars lambda, alpha is an element of F, in which alpha not equal 0 only if r = n, n(1) = n(k) = 1 and vertical bar F vertical bar = 3, such that psi(A) = lambda A + mu(A)I-n + alpha(a(11) + a(nn))E-1n for all A = (a(ij)) is an element of T-n1, ..., n(k), where E-ij is an element of Tn(1), ..., n(k) is the matrix unit whose (i, j)th entry is one and zero elsewhere. Using this result, a complete structural characterization of commuting additive maps on rank s > 1 upper triangular matrices over an arbitrary field is addressed.
引用
收藏
页码:63 / 94
页数:32
相关论文
共 50 条
  • [1] Centralizing additive maps on rank r block triangular matrices
    W. L. Chooi
    M. H. A. Mutalib
    L. Y. Tan
    Acta Scientiarum Mathematicarum, 2021, 87 : 63 - 94
  • [2] On centralizing additive maps on rank one triangular matrices over division rings
    Wai Leong Chooi
    Li Yin Tan
    Yean Nee Tan
    Advances in Operator Theory, 2023, 8
  • [3] On centralizing additive maps on rank one triangular matrices over division rings
    Chooi, Wai Leong
    Tan, Li Yin
    Tan, Yean Nee
    ADVANCES IN OPERATOR THEORY, 2023, 8 (04)
  • [4] Additive maps preserving rank commutativity on triangular matrices
    Zhang, Yang
    Zheng, Baodong
    ADVANCES IN MATRIX THEORY AND APPLICATIONS, 2006, : 81 - 84
  • [5] Strong commutativity preserving additive maps on rank k triangular matrices
    Chooi, Wai Leong
    Tan, Li Yin
    Tan, Yean Nee
    LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (01): : 1 - 24
  • [6] Commuting maps on rank k triangular matrices
    Chooi, Wai Leong
    Kwa, Kiam Heong
    Tan, Li Yin
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (05): : 1021 - 1030
  • [7] Commuting maps on rank one triangular matrices
    Chooi, W. L.
    Mutalib, M. H. A.
    Tan, L. Y.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 626 : 34 - 55
  • [8] THE RANK OF POWERS OF MATRICES IN A BLOCK TRIANGULAR FORM
    FRIEDLAND, S
    HERSHKOWITZ, D
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1988, 107 : 17 - 22
  • [9] Additive maps on rank-s matrices
    Xu, Xiaowei
    Liu, Hanchao
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (04): : 806 - 812
  • [10] On the computation of the rank of triangular banded block Toeplitz matrices
    Huang, Jie
    Huang, Ting-Zhu
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2011, 13 (01) : 188 - 198