Superposition operators on Dirichlet spaces

被引:2
|
作者
Fitzsimmons, PJ [1 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
关键词
D O I
10.2748/tmj/1113246670
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the context of a strongly local Dirichlet space we show that if a function mapping the real line to itself (and fixing the origin) operates by composition on the left to map the Dirichlet space into itself, then the function is necessarily locally Lipschitz continuous. If, in addition, the Dirichlet space contains unbounded elements, then the function must be globally Lipschitz continuous. The proofs rely on a co-area formula for condenser potentials.
引用
收藏
页码:327 / 340
页数:14
相关论文
共 50 条