Integral calculus on Eq(2)

被引:2
作者
Brzezinski, Tomasz [1 ]
机构
[1] Swansea Univ, Dept Math, Swansea SA2 8PP, W Glam, Wales
关键词
integral forms; hom-connection; quantum Euclidean group; SU(2);
D O I
10.3842/SIGMA.2010.040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The complexes of integral forms on the quantum Euclidean group E(q)(2) and the quantum plane are defined and their isomorphisms with the corresponding de Rham complexes are established.
引用
收藏
页数:10
相关论文
共 11 条
[1]  
[Anonymous], GRUNDLEHREN MATH WIS
[2]   NON-COMMUTATIVE CONNECTIONS OF THE SECOND KIND [J].
Brzezinski, Tomasz .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2008, 7 (05) :557-573
[3]   Non-commutative integral forms and twisted multi-derivations [J].
Brzezinski, Tomasz ;
El Kaoutit, Laiachi ;
Lomp, Christian .
JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2010, 4 (02) :281-312
[4]  
GOODEARL KR, 1994, MEM AM MATH SOC, V109
[5]  
KRAHMER U, 2007, NEW TECHNIQUES HOPF, P117
[6]   D-MODULES ON SUPERMANIFOLDS [J].
PENKOV, IB .
INVENTIONES MATHEMATICAE, 1983, 71 (03) :501-512
[7]   A relation between Hochschild homology and cohomology for Gorenstein rings (vol 126, pg 1345, 1998) [J].
Van den Bergh, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (09) :2809-2810
[8]   Differential operators over quantum spaces [J].
Verbovetsky, A .
ACTA APPLICANDAE MATHEMATICAE, 1997, 49 (03) :339-361
[9]  
VINOGRADOV MM, 1995, RUSSIAN ACAD SCI MAT, V50, P229
[10]   QUANTUM SU(2) AND E(2) GROUPS - CONTRACTION PROCEDURE [J].
WORONOWICZ, SL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 149 (03) :637-652