The Immersed Interface Method for Simulating Two-Fluid Flows

被引:10
作者
Uh, Miguel [1 ]
Xu, Sheng [1 ]
机构
[1] So Methodist Univ, Dept Math, Dallas, TX 75275 USA
来源
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS | 2014年 / 7卷 / 04期
关键词
Immersed interface method; two-fluid flows; jump conditions; augmented variable approach; singular force; Cartesian grid methods; NAVIER-STOKES EQUATIONS; FRONT-TRACKING METHOD; LEVEL SET METHODS; NUMERICAL-SIMULATION; FLUID METHOD; FREE-SURFACE; VOLUME;
D O I
10.4208/nmtma.2014.1309si
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop the immersed interface method (IIM) to simulate a two-fluid flow of two immiscible fluids with different density and viscosity. Due to the surface tension and the discontinuous fluid properties, the two-fluid flow has nonsmooth velocity and discontinuous pressure across the moving sharp interface separating the two fluids. The IIM computes the flow on a fixed Cartesian grid by incorporating into numerical schemes the necessary jump conditions induced by the interface. We present how to compute these necessary jump conditions from the analytical principal jump conditions derived in [Xu, DCDS, Supplement 2009, pp. 838-845]. We test our method on some canonical two-fluid flows. The results demonstrate that the method can handle large density and viscosity ratios, is second-order accurate in the infinity norm, and conserves mass inside a closed interface.
引用
收藏
页码:447 / 472
页数:26
相关论文
共 50 条
  • [41] Simulation of two-fluid flows by the least-squares finite element method using a continuum surface tension model
    Wu, J
    Yu, ST
    Jiang, BN
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1998, 42 (04) : 583 - 600
  • [42] The Immersed Boundary Method: Application to Two-Phase Immiscible Flows
    Spizzichino, Avihai
    Goldring, Sharone
    Feldman, Yuri
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2019, 25 (01) : 107 - 134
  • [43] An accurate low-Mach scheme for a compressible two-fluid model applied to free-surface flows
    Grenier, N.
    Vila, J. -P.
    Villedieu, P.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 252 : 1 - 19
  • [44] AN IMMERSED INTERFACE METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS WITH DISCONTINUOUS VISCOSITY ACROSS THE INTERFACE
    Tan, Zhijun
    Le, D. V.
    Lim, K. M.
    Khoo, B. C.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (03) : 1798 - 1819
  • [45] An immersed interface method for solving incompressible viscous flows with piecewise constant viscosity across a moving elastic membrane
    Tan, Zhijun
    Le, D. V.
    Li, Zhilin
    Lim, K. M.
    Khoo, B. C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (23) : 9955 - 9983
  • [46] An immersed boundary method for fluid flows around rigid objects
    Jendoubi, A.
    Yakoubi, D.
    Fortin, A.
    Tibirna, C.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2014, 75 (01) : 63 - 80
  • [47] Turbulence-interface interactions in a two-fluid homogeneous flow
    Li, Zhaorui
    Jaberi, Farhad A.
    PHYSICS OF FLUIDS, 2009, 21 (09)
  • [48] Simulating flows with moving rigid boundary using immersed-boundary method
    Liao, Chuan-Chieh
    Chang, Yu-Wei
    Lin, Chao-An
    McDonough, J. M.
    COMPUTERS & FLUIDS, 2010, 39 (01) : 152 - 167
  • [49] An efficient numerical method for simulating multiphase flows using a diffuse interface model
    Lee, Hyun Geun
    Kim, Junseok
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 423 : 33 - 50
  • [50] Numerical simulation of turbulent flows on the basis of a two-fluid model of turbulence
    Madaliev, Murodil E.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2023, (82): : 120 - 140