Barnes' multiple Frobenius-Euler and poly-Bernoulli mixed-type polynomials

被引:4
作者
Kim, Dae San [1 ]
Kim, Taekyun [2 ]
Seo, Jong-Jin [3 ]
Komatsu, Takao [4 ]
机构
[1] Sogang Univ, Dept Math, Seoul 121741, South Korea
[2] Kwangwoon Univ, Dept Math, Seoul 139701, South Korea
[3] Pukyong Natl Univ, Dept Appl Math, Pusan 608739, South Korea
[4] Hirosaki Univ, Grad Sch Sci & Technol, Hirosaki, Aomori 0368561, Japan
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2014年
基金
日本学术振兴会; 新加坡国家研究基金会;
关键词
Formal Power Series; Bernoulli Number; Bernoulli Polynomial; Stirling Number; Polylogarithm Function;
D O I
10.1186/1687-1847-2014-92
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider Barnes' multiple Frobenius-Euler and poly-Bernoulli mixed-type polynomials. From the properties of Sheffer sequences of these polynomials arising from umbral calculus, we derive new and interesting identities.
引用
收藏
页数:16
相关论文
共 5 条
  • [1] POLYLOGARITHMS AND POLY-BERNOULLI POLYNOMIALS
    Bayad, Abdelmejid
    Hamahata, Yoshinori
    [J]. KYUSHU JOURNAL OF MATHEMATICS, 2011, 65 (01) : 15 - 24
  • [2] The Arakawa-Kaneko zeta function
    Coppo, Marc-Antoine
    Candelpergher, Bernard
    [J]. RAMANUJAN JOURNAL, 2010, 22 (02) : 153 - 162
  • [3] Kim D. S., POLY BERNOULLI POLYN
  • [4] Some identities of Frobenius-Euler polynomials arising from umbral calculus
    Kim, Dae San
    Kim, Taekyun
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2012,
  • [5] ROMAN S, 2005, UMBRAL CALCULUS