Celestial mechanics;
Curved N-body problem;
Space of constant curvature;
Central configurations;
Relative equilibria;
Wintner-Smale conjecture;
Geodesic configurations;
Continuum of central configurations;
POLYGONAL HOMOGRAPHIC ORBITS;
RELATIVE EQUILIBRIA;
3-BODY PROBLEM;
INTRINSIC APPROACH;
SPACES;
STABILITY;
EXISTENCE;
TOPOLOGY;
PLANAR;
D O I:
10.1007/s00332-018-9473-y
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We consider the N-body problem of celestial mechanics in spaces of nonzero constant curvature. Using the concept of effective potential, we define the moment of inertia for systems moving on spheres and hyperbolic spheres and show that we can recover the classical definition in the Euclidean case. After proving some criteria for the existence of relative equilibria, we find a natural way to define the concept of central configuration in curved spaces using the moment of inertia and show that our definition is formally similar to the one that governs the classical problem. We prove that, for any given point masses on spheres and hyperbolic spheres, central configurations always exist. We end with results concerning the number of central configurations that lie on the same geodesic, thus extending the celebrated theorem of Moulton to hyperbolic spheres and pointing out that it has no straightforward generalization to spheres, where the count gets complicated even for two bodies.
机构:
Univ Victoria, Dept Math & Stat, POB 1700 STN CSC, Victoria, BC V8W 2Y2, CanadaUniv Victoria, Dept Math & Stat, POB 1700 STN CSC, Victoria, BC V8W 2Y2, Canada
Boulter, Eric
Diacu, Florin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Victoria, Dept Math & Stat, POB 1700 STN CSC, Victoria, BC V8W 2Y2, Canada
Univ Victoria, Pacific Inst Math Sci, POB 1700 STN CSC, Victoria, BC V8W 2Y2, CanadaUniv Victoria, Dept Math & Stat, POB 1700 STN CSC, Victoria, BC V8W 2Y2, Canada
Diacu, Florin
Zhu, Shuqiang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Victoria, Dept Math & Stat, POB 1700 STN CSC, Victoria, BC V8W 2Y2, CanadaUniv Victoria, Dept Math & Stat, POB 1700 STN CSC, Victoria, BC V8W 2Y2, Canada
机构:
Jagiellonian Univ, Fac Math & Comp Sci, Ul Prof Stanislawa Lojasiewicza 6, PL-30348 Krakow, PolandJagiellonian Univ, Fac Math & Comp Sci, Ul Prof Stanislawa Lojasiewicza 6, PL-30348 Krakow, Poland