Solving stochastic differential equations on Homeo(S1)

被引:7
作者
Fang, SZ [1 ]
机构
[1] Univ Bourgogne, IMB, F-21078 Dijon, France
关键词
canonical Brownian motion; Girsanov transform; flow of homeomorphisms; martingale problem;
D O I
10.1016/j.jfa.2003.09.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Brownian motion with respect to the metric H-3/2 on Diff(S-1) has been constructed. It is realized on the group of homeomorphisms Homeo(S-1). In this work, we shall resolve the stochastic differential equations on Homeo(S-1) for a given drift Z. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:22 / 46
页数:25
相关论文
共 17 条
[1]   Modulus of continuity of the canonic Brownian motion "on the group of diffeomorphisms of the circle" [J].
Airault, H ;
Ren, JG .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 196 (02) :395-426
[2]   STOCHASTIC DIFFERENTIAL-EQUATIONS IN INFINITE DIMENSIONS - SOLUTIONS VIA DIRICHLET FORMS [J].
ALBEVERIO, S ;
ROCKNER, M .
PROBABILITY THEORY AND RELATED FIELDS, 1991, 89 (03) :347-386
[3]  
BAXENDALE P, 1984, COMPOS MATH, V53, P19
[4]   STRING THEORY AS THE KAHLER GEOMETRY OF LOOP SPACE [J].
BOWICK, MJ ;
RAJEEV, SG .
PHYSICAL REVIEW LETTERS, 1987, 58 (06) :535-538
[5]  
DAPRRATO G, 1992, STOCATIC EQUATIONS I
[6]  
ELWORTHY KD, 1992, DIFFUSION PROCESSES
[7]  
FANG S, IN PRESS CR ACAD PAR
[8]   Canonical Brownian motion on the diffeomorphism group of the circle [J].
Fang, SZ .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 196 (01) :162-179
[9]  
Gel'fand I. M., 1968, FUNKT ANAL PRIL, V2, P92
[10]  
HARDY GH, 1950, MATH MATH PHYS, V38