PETROV-GALERKIN AND SPECTRAL COLLOCATION METHODS FOR DISTRIBUTED ORDER DIFFERENTIAL EQUATIONS

被引:61
|
作者
Kharazmi, Ehsan [1 ,2 ]
Zayernouri, Mohsen [1 ,2 ]
Karniadakis, George Em [3 ]
机构
[1] Michigan State Univ, Dept Computat Math Sci & Engn, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA
[3] Brown Univ, Div Appl Math, Providence, RI 02912 USA
关键词
distributed Sobolev space; distributed bilinear forms; modal basis; nodal basis; fractional Lagrange interpolants; spectral convergence; stability analysis; error analysis; uncertainty quantification; TIME-FRACTIONAL DIFFUSION; NUMERICAL-SOLUTION; ELEMENT METHODS; EXTRAPOLATION METHOD; APPROXIMATION; SCHEMES; STABILITY; ACCURACY;
D O I
10.1137/16M1073121
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Distributed order fractional operators offer a rigorous tool for mathematical modelling of multiphysics phenomena, where the differential orders are distributed over a range of values rather than being just a fixed integer/fraction as in standard/fractional ODEs/PDEs. We develop two spectrally accurate schemes, namely, a Petrov-Galerkin spectral method and a spectral collocation method for distributed order fractional differential equations. These schemes are developed based on the fractional Sturm-Liouville eigen-problems (FSLPs) [M. Zayernouri and G. E. Karniadakis, T. Comput. Phys., 47 (2013), pp. 2108-2131]. In the Petrov-Galerkin method, we employ fractional (nonpolynomial) basis functions, called Jacobi polyfractonomials, which are the eigenfunctions of the FSLP of first kind, while we employ another space of test functions as the span of polyfractonomial eigenfunctions of the FSLP of second kind. We define the underlying distributed Sobolev space and the associated norms, where we carry out the corresponding discrete stability and error analyses of the proposed scheme. In the collocation scheme, we employ fractional (nonpolynomial) Lagrange interpolants satisfying the Kronecker delta property at the collocation points. Subsequently, we obtain the corresponding distributed differentiation matrices to be employed in the discretization of the strong problem. We perform systematic numerical tests to demonstrate the efficiency and conditioning of each method.
引用
收藏
页码:A1003 / A1037
页数:35
相关论文
共 50 条
  • [21] A spectral Petrov-Galerkin method for optimal control problem governed by a fractional ordinary differential equation
    Wang, Yibo
    Cao, Wanrong
    Li, Shengyue
    APPLIED NUMERICAL MATHEMATICS, 2022, 177 : 18 - 33
  • [22] Mixed meshless local Petrov-Galerkin collocation method for modeling of material discontinuity
    Jalusic, Boris
    Soric, Jurica
    Jarak, Tomislav
    COMPUTATIONAL MECHANICS, 2017, 59 (01) : 1 - 19
  • [23] Petrov-Galerkin method for small deflections in fourth-order beam equations in civil engineering
    Youssri, Youssri Hassan
    Atta, Ahmed Gamal
    Abu Waar, Ziad Yousef
    Moustafa, Mohamed Orabi
    NONLINEAR ENGINEERING - MODELING AND APPLICATION, 2024, 13 (01):
  • [24] Hyper-reduction for Petrov-Galerkin reduced order models
    de Parga, S. Ares
    Bravo, J. R.
    Hernandez, J. A.
    Zorrilla, R.
    Rossi, R.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 416
  • [25] A Space-Time Petrov-Galerkin Spectral Method for Time Fractional Diffusion Equation
    Sheng, Changtao
    Shen, Jie
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2018, 11 (04) : 854 - 876
  • [26] A DISCONTINUOUS PETROV-GALERKIN METHOD FOR TIME-FRACTIONAL DIFFUSION EQUATIONS
    Mustapha, K.
    Abdallah, B.
    Furati, K. M.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (05) : 2512 - 2529
  • [27] An h-p version of the continuous Petrov-Galerkin time stepping method for nonlinear second-order delay differential equations
    Xie, Jinghua
    Yi, Lijun
    APPLIED NUMERICAL MATHEMATICS, 2019, 143 : 1 - 19
  • [28] Stochastic collocation and stochastic Galerkin methods for linear differential algebraic equations
    Pulch, Roland
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 262 : 281 - 291
  • [29] Error estimates of a spectral Petrov-Galerkin method for two-sided fractional reaction-diffusion equations
    Hao, Zhaopeng
    Lin, Guang
    Zhang, Zhongqiang
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 374
  • [30] AN IMPROVED COLLOCATION TECHNIQUE FOR DISTRIBUTED-ORDER FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS
    Abdelkawy, M. A.
    ROMANIAN REPORTS IN PHYSICS, 2020, 72 (01)