Nonlocal orbital-free kinetic energy density functional for semiconductors

被引:144
|
作者
Huang, Chen [1 ]
Carter, Emily A. [2 ,3 ]
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
[3] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
DIELECTRIC FUNCTION; VACANCY FORMATION; BAND-STRUCTURE; GROUND-STATE; PSEUDOPOTENTIALS; ALUMINUM; APPROXIMATION; SOLIDS; METALS; ATOMS;
D O I
10.1103/PhysRevB.81.045206
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose a nonlocal kinetic energy density functional (KEDF) for semiconductors based on the expected asymptotic behavior of its susceptibility function. The KEDF's kernel depends on both the electron density and the reduced density gradient, with an internal parameter formally related to the material's static dielectric constant. We determine the accuracy of the KEDF within orbital-free density functional theory (DFT) by applying it to a variety of common semiconductors. With only two adjustable parameters, the KEDF reproduces quite well the exact noninteracting KEDF (i.e., Kohn-Sham DFT) predictions of bulk moduli, equilibrium volumes, and equilibrium energies. The two parameters in our KEDF are sensitive primarily to changes in the local crystal structure (such as atomic coordination number) and exhibit good transferability between different tetrahedrally-bonded phases. This local crystal structure dependence is rationalized by considering Thomas-Fermi dielectric screening theory.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Orbital-corrected orbital-free density functional theory
    Wang, Yan Alexander
    Zhou, Baojing
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233 : 301 - 301
  • [22] Orbital-corrected orbital-free density functional theory
    Zhou, BJ
    Wang, YA
    JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (08):
  • [23] Orbital-free density functional theory calculation applying semi-local machine-learned kinetic energy density functional and kinetic potential
    Fujinami, Mikito
    Kageyama, Ryo
    Seino, Junji
    Ikabata, Yasuhiro
    Nakai, Hiromi
    CHEMICAL PHYSICS LETTERS, 2020, 748
  • [24] Orbital-corrected orbital-free density functional theory
    Zhou, Baojing
    Wang, Yan Alexander
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [25] Machine Learning Approaches toward Orbital-free Density Functional Theory: Simultaneous Training on the Kinetic Energy Density Functional and Its Functional Derivative
    Meyer, Ralf
    Weichselbaum, Manuel
    Hauser, Andreas W.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (09) : 5685 - 5694
  • [26] Nonlocal and nonadiabatic Pauli potential for time-dependent orbital-free density functional theory
    Jiang, Kaili
    Shao, Xuecheng
    Pavanello, Michele
    PHYSICAL REVIEW B, 2021, 104 (23)
  • [27] Orbital-free density functional theory:: Kinetic potentials and ab initio local pseudopotentials
    Chai, Jeng-Da
    Weeks, John D.
    PHYSICAL REVIEW B, 2007, 75 (20):
  • [28] Orbital-free density functional theory: Kinetic potentials and ab initio local pseudopotentials
    Chai, JD
    Weeks, JD
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U2897 - U2897
  • [29] Incremental solver for orbital-free density functional theory
    Rousse, Francois
    Redon, Stephane
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2019, 40 (23) : 2013 - 2027
  • [30] Orbital-free density functional theory for materials research
    Witt, William C.
    del Rio, Beatriz G.
    Dieterich, Johannes M.
    Carter, Emily A.
    JOURNAL OF MATERIALS RESEARCH, 2018, 33 (07) : 777 - 795