Numerical Solution for a Parabolic Obstacle Problem with Nonsmooth Initial Data

被引:8
作者
Yang, Xiaozhong [1 ]
Wang, Guanghui [2 ]
Gu, Xiangqian [2 ]
机构
[1] North China Elect Power Univ, Sch Math & Phys, Beijing 102206, Peoples R China
[2] Chinese Acad Meteorol Sci, State Key Lab Severe Weather LaSW, Beijing 100081, Peoples R China
关键词
error estimate; finite element method; numerical simulation; obstacle problem; regularization method; AMERICAN OPTION VALUATION; FINITE-VOLUME METHOD; VARIATIONAL INEQUALITY; UNILATERAL PROBLEMS; FREE-BOUNDARY; APPROXIMATION; CONVERGENCE;
D O I
10.1002/num.21893
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article discusses the finite element approximation of solutions to a variational inequality of a parabolic obstacle problem with a nonsmooth initial data by a piecewise linear finite element discretization in space and an implicit time-stepping scheme. We show that the error of the approximation in a certain norm is of order O(h + Delta t(1/2)) by regularization method under some realistic regularity assumptions on the exact solution, where Delta t is the time step and h is the mesh parameter of the spatial partition. Numerical examples are presented to confirm our theoretical results. (c) 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1740-1754, 2014
引用
收藏
页码:1740 / 1754
页数:15
相关论文
共 21 条
[1]  
Angermann L, 2007, NUMER MATH, V106, P1, DOI [10.1007/s00211-006-0057-7, 10.1007/S00211-006-0057-7]
[2]  
[Anonymous], 1999, Theory, Methods and Applications, Nonconvex Optim. Appl.
[3]   On the regularity of the free boundary in the parabolic obstacle problem. Application to American options [J].
Blanchet, Adrien .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 65 (07) :1362-1378
[4]  
Brenner S. C., 2007, MATH THEORY FINITE E
[5]  
BREZIS H, 1972, J MATH PURE APPL, V51, P1
[6]   NON-LINEAR EQUATIONS AND INEQUATIONS IN DUAL VECTORIAL SPACES [J].
BREZIS, H .
ANNALES DE L INSTITUT FOURIER, 1968, 18 (01) :115-&
[7]  
Duvaut G., 1976, INEQUALITIES MECH PH, Vfirst, DOI [10.1007/978-3-642-66165-5, DOI 10.1007/978-3-642-66165-5]
[8]  
Ficher G., 1964, Atti Accad. Naz. Lincci, Cl. Sci. Fis. Mat. Nat., Sez., V7, P91
[9]  
Glowinski R., 1981, Numerical Analysis of Variational Inequalities
[10]   CONVERGENCE ESTIMATE FOR AN APPROXIMATION OF A PARABOLIC VARIATIONAL INEQUALITY [J].
JOHNSON, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (04) :599-606