Asymptotic behavior for a dissipative nonlinear Schrodinger

被引:21
作者
Cazenave, Thierry [1 ,2 ]
Han, Zheng [3 ]
Naumkin, Ivan [4 ]
机构
[1] Sorbonne Univ, BC 187,4 Pl Jussieu, F-75252 Paris 05, France
[2] CNRS, Lab Jacques Louis Lions, BC 187,4 Pl Jussieu, F-75252 Paris 05, France
[3] Hangzhou Normal Univ, Dept Math, Hangzhou 311121, Peoples R China
[4] Univ Nacl Autonoma Mexico, Dept Fis Matemat, Inst Invest Matemat Aplicadas & Sistemas, Apartado Postal 20-126, Ciudad De Mexico 01000, Mexico
关键词
Nonlinear Schrodinger equation; Dissipative nonlinearity; Asymptotic behavior;
D O I
10.1016/j.na.2020.112243
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Schrodinger equation with nonlinear dissipation i partial derivative(t)u + Delta u = lambda vertical bar u vertical bar(alpha)u in R-N, N >= 1, where lambda is an element of C with I lambda < 0. Assuming 2/N+2 < alpha < 2/N, we give a precise description of the long-time behavior of the solutions (including decay rates in L-2 and L-infinity, and asymptotic profile), for a class of arbitrarily large initial data. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:37
相关论文
共 21 条
[1]   RAPIDLY DECAYING SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION [J].
CAZENAVE, T ;
WEISSLER, FB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 147 (01) :75-100
[2]   Blowup on an Arbitrary Compact Set for a Schrodinger Equation with Nonlinear Source Term [J].
Cazenave, Thierry ;
Han, Zheng ;
Martel, Yvan .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2021, 33 (02) :941-960
[3]   ASYMPTOTIC BEHAVIOR FOR A SCHRODINGER EQUATION WITH NONLINEAR SUBCRITICAL DISSIPATION [J].
Cazenave, Thierry ;
Han, Zheng .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (08) :4801-4819
[4]   FINITE-TIME BLOWUP FOR A SCHRODINGER EQUATION WITH NONLINEAR SOURCE TERM [J].
Cazenave, Thierry ;
Martel, Yvan ;
Zhao, Lifeng .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (02) :1171-1183
[5]   Modified scattering for the critical nonlinear Schrodinger equation [J].
Cazenave, Thierry ;
Naumkin, Ivan .
JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 274 (02) :402-432
[6]   A Fujita-type blowup result and low energy scattering for a nonlinear Schrodinger equation [J].
Cazenave, Thierry ;
Correia, Simao ;
Dickstein, Flavio ;
Weissler, Fred B. .
SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2015, 9 (02) :146-161
[7]   Local existence, global existence, and scattering for the nonlinear Schrodinger equation [J].
Cazenave, Thierry ;
Naumkin, Ivan .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2017, 19 (02)
[8]   A multivariate Faa di Bruno formula with applications [J].
Constantine, GM ;
Savits, TH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (02) :503-520
[9]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[10]   CLASS OF NON-LINEAR SCHRODINGER EQUATIONS .2. SCATTERING THEORY, GENERAL-CASE [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 32 (01) :33-71