A NEW INFORMATION THEORETIC CLUSTERING ALGORITHM USING K-NN

被引:0
作者
Vikjord, Vidar [1 ]
Jenssen, Robert [2 ]
机构
[1] Microsoft Dev Ctr Norway, Oslo, Norway
[2] Univ Tromso, Dept Phys & Technol, Tromso, Norway
来源
2013 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP) | 2013年
关键词
Information theoretic clustering; k-nearest neighbors; kernel density estimation; Parzen windowing; robustness to scale;
D O I
10.1109/MLSP.2013.6661968
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We develop a new non-parametric hierarchical information theoretic clustering algorithm based on implicit estimation of cluster densities using k-nearest neighbors (k-nn). Compared to a kernel-based procedure, our k-nn approach is very robust with respect to the parameter choices, with a key ability to detect clusters of vastly different scales. Of particular importance is the use of two different values of k, depending on the evaluation of within-cluster entropy or across-cluster cross-entropy in order to obtain the final clustering. We conduct clustering experiments, and report promising results, focusing in particular on the proposed algorithm's robustness to scale.
引用
收藏
页数:6
相关论文
共 15 条
  • [1] Dhillon I. S., 2003, Journal of Machine Learning Research, V3, P1265, DOI 10.1162/153244303322753661
  • [2] Faivishevsky L., 2010, ICML, P351
  • [3] Combining multiple clusterings using evidence accumulation
    Fred, ALN
    Jain, AK
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (06) : 835 - 850
  • [4] Mercer kernel-based clustering in feature space
    Girolami, M
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2002, 13 (03): : 780 - 784
  • [5] Data clustering: 50 years beyond K-means
    Jain, Anil K.
    [J]. PATTERN RECOGNITION LETTERS, 2010, 31 (08) : 651 - 666
  • [6] Jenssen R., 2013, IEEE SI IN PRESS JUL
  • [7] Information cut for clustering using a gradient descent approach
    Jenssen, Robert
    Erdogmus, Deniz
    Hild, Kenneth E., II
    Principe, Jose C.
    Eltoft, Torbjorn
    [J]. PATTERN RECOGNITION, 2007, 40 (03) : 796 - 806
  • [8] Kernel Entropy Component Analysis
    Jenssen, Robert
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (05) : 847 - 860
  • [9] Murphy R., 1994, TECH REP
  • [10] Principe JC, 2010, INFORM SCI STAT, P1, DOI 10.1007/978-1-4419-1570-2