A splitting bundle approach for non-smooth non-convex minimization

被引:15
|
作者
Fuduli, A. [1 ]
Gaudioso, M. [2 ]
Nurminski, E. A. [3 ,4 ]
机构
[1] Univ Calabria, Dipartimento Matemat & Informat, I-87036 Arcavacata Di Rende, Italy
[2] Univ Calabria, Dipartimento Ingn Informat Modellist Elettron & S, I-87036 Arcavacata Di Rende, Italy
[3] Far Eastern Fed Univ, Vladivostok, Russia
[4] Inst Automat & Control Problems Far Eastern Branc, Vladivostok, Russia
关键词
90C26; 65K05; bundle methods; non-convex optimization; non-smooth optimization; GRADIENT SAMPLING ALGORITHM; CONVEX MINIMIZATION; PROXIMITY CONTROL; OPTIMIZATION; CONVERGENCE; CLASSIFICATION; APPROXIMATIONS; STRATEGY; PROGRAMS;
D O I
10.1080/02331934.2013.840625
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We present a bundle-type method for minimizing non-convex non-smooth functions. Our approach is based on the partition of the bundle into two sets, taking into account the local convex or concave behaviour of the objective function. Termination at a point satisfying an approximate stationarity condition is proved and numerical results are provided. © 2013 Taylor & Francis.
引用
收藏
页码:1131 / 1151
页数:21
相关论文
共 50 条
  • [21] Effective Proximal Methods for Non-convex Non-smooth Regularized Learning
    Liang, Guannan
    Tong, Qianqian
    Ding, Jiahao
    Pan, Miao
    Bi, Jinbo
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2020), 2020, : 342 - 351
  • [22] Maximal Averages over Certain Non-smooth and Non-convex Hypersurfaces
    Heo, Yaryong
    Hong, Sunggeum
    Yang, Chan Woo
    TAIWANESE JOURNAL OF MATHEMATICS, 2018, 22 (06): : 1383 - 1401
  • [23] Inertial Block Proximal Methods For Non-Convex Non-Smooth Optimization
    Le Thi Khanh Hien
    Gillis, Nicolas
    Patrinos, Panagiotis
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [24] Convergence guarantees for a class of non-convex and non-smooth optimization problems
    Khamaru, Koulik
    Wainwright, Martin J.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [25] Cutting Plane Oracles to Minimize Non-smooth Non-convex Functions
    Noll, Dominikus
    SET-VALUED AND VARIATIONAL ANALYSIS, 2010, 18 (3-4) : 531 - 568
  • [26] Convergence guarantees for a class of non-convex and non-smooth optimization problems
    Khamaru, Koulik
    Wainwright, Martin J.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20
  • [27] Inexact Proximal Gradient Methods for Non-Convex and Non-Smooth Optimization
    Gu, Bin
    Wang, De
    Huo, Zhouyuan
    Huang, Heng
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 3093 - 3100
  • [28] Cutting Plane Oracles to Minimize Non-smooth Non-convex Functions
    Dominikus Noll
    Set-Valued and Variational Analysis, 2010, 18 : 531 - 568
  • [29] Optimal, Stochastic, Non-smooth, Non-convex Optimization through Online-to-Non-convex Conversion
    Cutkosky, Ashok
    Mehta, Harsh
    Orabona, Francesco
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 202, 2023, 202
  • [30] Inertial alternating direction method of multipliers for non-convex non-smooth optimization
    Le Thi Khanh Hien
    Duy Nhat Phan
    Nicolas Gillis
    Computational Optimization and Applications, 2022, 83 : 247 - 285