Composition Estimation of Reactive Batch Distillation by Using Adaptive Neuro-Fuzzy Inference System

被引:20
|
作者
Khazraee, S. M. [1 ]
Jahanmiri, A. H. [1 ]
机构
[1] Shiraz Univ, Sch Chem & Petr Engn, Shiraz 71345, Iran
关键词
reactive batch distillation; multicomponent; pilot plant; adaptive neuro-fuzzy inference system; state estimation; STATE ESTIMATION;
D O I
10.1016/S1004-9541(10)60278-9
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Composition estimation plays very important role in plant operation and control. Extended Kalman filter (EKF) is one of the most common estimators, which has been used in composition estimation of reactive batch distillation, but its performance is heavily dependent on the thermodynamic modeling of vapor-liquid equilibrium, which is difficult to initialize and tune. In this paper an inferential state estimation scheme based on adaptive neuro-fuzzy inference system (ANFIS), which is a model base estimator, is employed for composition estimation by using temperature measurements in multicomponent reactive batch distillation. The state estimator is supported by data from a complete dynamic model that includes component and energy balance equations accompanied with thermodynamic relations and reaction kinetics. The mathematical model is verified by pilot plant data. The simulation results show that the ANF1S estimator provides reliable and accurate estimation for component concentrations in reactive batch distillation. The estimated states form a basis for improving the performance of reactive batch distillation either through decision making of an operator or through an automatic closed-loop control scheme.
引用
收藏
页码:703 / 710
页数:8
相关论文
共 50 条
  • [21] Modelling Unconfined Groundwater Recharge Using Adaptive Neuro-Fuzzy Inference System
    Mohamed Nabil I. Elsayed, Khaled
    Rustum, Rabee
    Adeloye, Adebayo J.
    PROCESSES, 2020, 8 (10) : 1 - 17
  • [22] Image Interpolation Based on Adaptive Neuro-Fuzzy Inference System
    Maleki, Shiva Aghapour
    Tinati, Mohammad Ali
    Tazehkand, Behzad Mozaffari
    2019 3RD INTERNATIONAL CONFERENCE ON IMAGING, SIGNAL PROCESSING AND COMMUNICATION (ICISPC), 2019, : 78 - 84
  • [23] Dynamic modelling of PEMFC by adaptive neuro-fuzzy inference system
    Karimi, Milad
    Rezazadeh, Alireza
    INTERNATIONAL JOURNAL OF ELECTRIC AND HYBRID VEHICLES, 2016, 8 (04) : 289 - 301
  • [24] An adaptive neuro-fuzzy inference system for sleep spindle detection
    Liang, Sheng-Fu
    Kuo, Chih-En
    Hu, Yu-Han
    Chen, Chun-Yu
    Li, Yu-Hung
    2012 INTERNATIONAL CONFERENCE ON FUZZY THEORY AND ITS APPLICATIONS (IFUZZY2012), 2012, : 369 - 373
  • [25] A hybrid of adaptive neuro-fuzzy inference system and genetic algorithm
    Varnamkhasti, M. Jalali
    Hassan, Nasruddin
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2013, 25 (03) : 793 - 796
  • [26] Adaptive Neuro-Fuzzy Inference System for Texture Image Classification
    Kuncoro, B. Ari
    Suharjito
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON AUTOMATION, COGNITIVE SCIENCE, OPTICS, MICRO ELECTRO-MECHANICAL SYSTEM, AND INFORMATION TECHNOLOGY (ICACOMIT), 2015, : 196 - 200
  • [27] An adaptive neuro-fuzzy inference system for bridge risk assessment
    Wang, Ying-Ming
    Elhag, Taha M. S.
    EXPERT SYSTEMS WITH APPLICATIONS, 2008, 34 (04) : 3099 - 3106
  • [28] Fusion of PET and MRI images using adaptive neuro-fuzzy inference system
    Kavitha, C. T.
    Chellamuthu, C.
    JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH, 2012, 71 (10): : 651 - 656
  • [29] Automatic Classification of Antepartum Cardiotocography Using Fuzzy Clustering and Adaptive Neuro-Fuzzy Inference System
    Fei, Yue
    Huang, Xiaoqian
    Chen, Qinqun
    Chen, Jiamin
    Li, Li
    Hong, Jiaming
    Hao, Zhifeng
    Wei, Hang
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 1938 - 1942
  • [30] An adaptive speed controller for induction motor drives using adaptive neuro-fuzzy inference system
    Chao, Kuei-Hsiang
    Shen, Yu-Ren
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS: WITH ASPECTS OF THEORETICAL AND METHODOLOGICAL ISSUES, 2007, 4681 : 381 - +