Antigenic and immunogenic evaluation of permutations of soluble hepatitis C virus envelope protein E2 and E1 antigens

被引:3
|
作者
Prentoe, Jannick [1 ,2 ]
Janitzek, Christoph M. [3 ,4 ]
Velazquez-Moctezuma, Rodrigo [1 ,2 ]
Goksoyr, Louise [3 ,4 ]
Olsen, Rebecca W. [3 ,4 ]
Fanalista, Margherita [1 ,2 ]
Augestad, Elias H. [1 ,2 ]
Thrane, Susan [3 ,4 ]
Pihl, Anne F. [1 ,2 ]
Gottwein, Judith M. [1 ,2 ]
Sander, Adam F. [3 ,4 ]
Bukh, Jens [1 ,2 ]
机构
[1] Univ Copenhagen, Fac Hlth & Med Sci, Dept Immunol & Microbiol, Copenhagen Hepatitis C Program CO HEP, Copenhagen, Denmark
[2] Hvidovre Univ Hosp, Dept Infect Dis, Hvidovre, Denmark
[3] Univ Copenhagen, Fac Hlth & Med Sci, Dept Immunol & Microbiol, Ctr Med Parasitol CMP, Copenhagen, Denmark
[4] Copenhagen Univ Hosp, Dept Infect Dis, Rigshosp, Copenhagen, Denmark
来源
PLOS ONE | 2021年 / 16卷 / 07期
关键词
BROADLY NEUTRALIZING ANTIBODIES; HUMAN MONOCLONAL-ANTIBODIES; CELL-CULTURE SYSTEMS; TRANSMEMBRANE DOMAINS; MAJOR ROLE; GLYCOPROTEIN; HCV; IMMUNIZATION; REPLICATION; EXPRESSION;
D O I
10.1371/journal.pone.0255336
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Yearly, about 1.5 million people become chronically infected with hepatitis C virus (HCV) and for the 71 million with chronic HCV infection about 400,000 die from related morbidities, including liver cirrhosis and cancer. Effective treatments exist, but challenges including cost-of-treatment and wide-spread undiagnosed infection, necessitates the development of vaccines. Vaccines should induce neutralizing antibodies (NAbs) against the HCV envelope (E) transmembrane glycoprotein 2, E2, which partly depends on its interaction partner, E1, for folding. Here, we generated three soluble HCV envelope protein antigens with the transmembrane regions deleted (i.e., fused peptide backbones), termed sE1E2 (E1 followed by E2), sE2E1 (E2 followed by E1), and sE21E (E2 followed by inverted E1). The E1 inversion for sE21E positions C-terminal residues of E1 near C-terminal residues of E2, which is in analogy to how they likely interact in native E1/E2 complexes. Probing conformational E2 epitope binding using HCV patient-derived human monoclonal antibodies, we show that sE21E was superior to sE2E1, which was consistently superior to sE1E2. This correlated with improved induction of NAbs by sE21E compared with sE2E1 and especially compared with sE1E2 in female BALB/c mouse immunizations. The deletion of the 27 N-terminal amino acids of E2, termed hypervariable region 1 (HVR1), conferred slight increases in antigenicity for sE2E1 and sE21E, but severely impaired induction of antibodies able to neutralize in vitro viruses retaining HVR1. Finally, comparing sE21E with sE2 in mouse immunizations, we show similar induction of heterologous NAbs. In summary, we find that C-terminal E2 fusion of E1 or 1E is superior to N-terminal fusion, both in terms of antigenicity and the induction of heterologous NAbs. This has relevance when designing HCV E1E2 vaccine antigens.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Structural Stability of Hepatitis C Virus Envelope Glycoprotein E1: Effect of pH and Dissociative Detergents
    He, Feng
    Joshi, Sangeeta B.
    Bosman, Fons
    Verhaeghe, Marijke
    Middaugh, C. Russell
    JOURNAL OF PHARMACEUTICAL SCIENCES, 2009, 98 (09) : 3340 - 3357
  • [42] Role of the E2 Hypervariable Region (HVR1) in the Immunogenicity of a Recombinant Hepatitis C Virus Vaccine
    Law, John L. M.
    Logan, Michael
    Wong, Jason
    Kundu, Juthika
    Hockman, Darren
    Landi, Amir
    Chen, Chao
    Crawford, Kevin
    Wininger, Mark
    Johnson, Janelle
    Prince, Catalina Mesa
    Dudek, Elzbieta
    Mehta, Ninad
    Tyrrell, D. Lorne
    Houghton, Michael
    JOURNAL OF VIROLOGY, 2018, 92 (11)
  • [43] Interaction of hepatitis C virus envelope glycoprotein E2 with the large extracellular loop of tupaia CD81
    Tian, Zhan-Fei
    Shen, Hong
    Fu, Xi-Hua
    Chen, Yi-Chun
    Blum, Hubert E.
    Baumert, Thomas F.
    Zhao, Xi-Ping
    WORLD JOURNAL OF GASTROENTEROLOGY, 2009, 15 (02) : 240 - 244
  • [44] Conserved peptides within the E2 region of Hepatitis C virus induce humoral and cellular responses in goats
    El-Awady, Mostafa K.
    Tabll, Ashraf A.
    El-Abd, Yasmine S.
    Yousif, Hassan
    Hegab, Mohsen
    Reda, Mohamed
    El Shenawy, Reem
    Moustafa, Rehab I.
    Degheidy, Nabila
    El Din, Noha G. Bader
    VIROLOGY JOURNAL, 2009, 6
  • [45] ANTIGENIC STRUCTURE OF THE HEPATITIS-C VIRUS ENVELOPE-2 PROTEIN
    ZHANG, ZX
    SONNERBORG, A
    SALLBERG, M
    CLINICAL AND EXPERIMENTAL IMMUNOLOGY, 1994, 98 (03) : 382 - 387
  • [46] Envelope protein E1 as vaccine target for western equine encephalitis virus
    Swayze, Richard D.
    Bhogal, Hardeep S.
    Barabe, Nicole D.
    McLaws, Lori J.
    Wu, Josh Q. H.
    VACCINE, 2011, 29 (04) : 813 - 820
  • [47] Broadly Neutralizing Antibodies Targeting New Sites of Vulnerability in Hepatitis C Virus E1E2
    Colbert, Michelle D.
    Flyak, Andrew, I
    Ogega, Clinton O.
    Kinchen, Valerie J.
    Massaccesi, Guido
    Hernandez, Mayda
    Davidson, Edgar
    Doranz, Benjamin J.
    Cox, Andrea L.
    Crowe, James E., Jr.
    Bailey, Justin R.
    JOURNAL OF VIROLOGY, 2019, 93 (14)
  • [48] GB Virus C/Hepatitis G Virus Envelope Glycoprotein E2: Computational Molecular Features and Immunoinformatics Study
    Ranjbar, Mohammad Mahdi
    Ghorban, Khodayar
    Alavian, Seyed Moayed
    Keyvani, Hossein
    Dadmanesh, Maryam
    Ardakany, Abbas Roayaei
    Motedayen, Mohammad Hassan
    Sazmand, Alireza
    HEPATITIS MONTHLY, 2013, 13 (12)
  • [49] Rubella virus pseudotypes and a cell-cell fusion assay as tools for functional analysis of the rubella virus E2 and E1 envelope glycoproteins
    Claus, Claudia
    Hofmann, Joerg
    Uberla, Klaus
    Liebert, U. G.
    JOURNAL OF GENERAL VIROLOGY, 2006, 87 : 3029 - 3037
  • [50] Optimization of codon usage of the envelope protein E2 gene from various genotypes of hepatitis C virus to predict the expression level in Pichia pastoris
    Perumal, Ponniah Saravana
    Wilson, Stevin
    Santhiagu, Arockiasamy
    GENES & GENOMICS, 2016, 38 (10) : 977 - 984