Dynamics of actively mode-locked Quantum Cascade Lasers

被引:44
|
作者
Gkortsas, V. -M. [1 ,2 ]
Wang, C. [3 ]
Kuznetsova, L. [4 ]
Diehl, L. [4 ]
Gordon, A. [1 ,2 ]
Jirauschek, C. [5 ]
Belkin, M. A. [3 ]
Belyanin, A. [6 ]
Capasso, F. [4 ]
Kaertner, F. X. [1 ,2 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[3] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[4] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[5] Tech Univ Munich, Inst Nanoelect, Munich, Germany
[6] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA
来源
OPTICS EXPRESS | 2010年 / 18卷 / 13期
关键词
GENERATION; LOCKING; PULSES; WATER;
D O I
10.1364/OE.18.013616
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The impact of upper state lifetime and spatial hole burning on pulse shape and stability in actively mode locked QCLs is investigated by numerical simulations. It is shown that an extended upper state lifetime is necessary to achieve stable isolated pulse formation per roundtrip. Spatial hole burning helps to reduce the pulse duration by supporting broadband multimode lasing, but introduces pulse instabilities which eventually lead to strongly structured pulse shapes that further degrade with increased pumping. At high pumping levels gain saturation and recovery between pulses leads to suppression of mode locking. In the absence of spatial hole burning the laser approaches single-mode lasing, while in the presence of spatial hole burning the mode locking becomes unstable and the laser dynamics does not reach a steady state anymore. (C) 2010 Optical Society America
引用
收藏
页码:13616 / 13630
页数:15
相关论文
共 50 条
  • [21] Unveiling external motion dynamics of solitons in passively mode-locked fiber lasers
    Zhang, Yusheng
    Huang, Lin
    Cui, Yudong
    Liu, Xueming
    OPTICS LETTERS, 2020, 45 (17) : 4835 - 4838
  • [22] Hybrid-filtering-controlled pulse dynamics in mode-locked fiber lasers
    Wen, Zengrun
    Zhang, Qinqin
    Fan, Xiulin
    Wang, Kaile
    Gao, Song
    Wang, Weiming
    Cai, Yangjian
    Gao, Yuanmei
    PHYSICAL REVIEW A, 2024, 109 (03)
  • [23] Intensity noise of mode-locked fiber lasers
    Budunoglu, Ibrahim Levent
    Ulgudur, Coskun
    Oktem, Bulent
    Ilday, Fatih Oemer
    OPTICS LETTERS, 2009, 34 (16) : 2516 - 2518
  • [24] Actively mode-locked Raman fiber laser
    Yang, Xuezong
    Zhang, Lei
    Jiang, Huawei
    Fan, Tingwei
    Feng, Yan
    OPTICS EXPRESS, 2015, 23 (15): : 19831 - 19836
  • [25] Advances in Mode-Locked Semiconductor Lasers
    Avrutin, E. A.
    Rafailov, E. U.
    ADVANCES IN SEMICONDUCTOR LASERS, 2012, 86 : 93 - 147
  • [26] Integration of mode-locked diode lasers
    Coleman, A. Catrina
    Hou, Lianping
    Marsh, John. H.
    SMART PHOTONIC AND OPTOELECTRONIC INTEGRATED CIRCUITS XVIII, 2016, 9751
  • [27] Dissipative solitons for mode-locked lasers
    Grelu, Philippe
    Akhmediev, Nail
    NATURE PHOTONICS, 2012, 6 (02) : 84 - 92
  • [28] Simulation of turbulence in mode-locked lasers
    New, G. H. C.
    Noy, M.
    Crosse, J. A.
    Rumley, A.
    Newson, L.
    Chen, Z. -Y.
    Cheung, C.
    Todhunter, A.
    OPTICS COMMUNICATIONS, 2009, 282 (22) : 4418 - 4422
  • [29] Mode-locked semiconductor disk lasers
    Gaafar, Mahmoud A.
    Rahimi-Iman, Arash
    Fedorova, Ksenia A.
    Stolz, Wolfgang
    Rafailov, Edik U.
    Koch, Martin
    ADVANCES IN OPTICS AND PHOTONICS, 2016, 8 (03): : 370 - 400
  • [30] Analytical Modeling of the Temperature Performance of Monolithic Passively Mode-Locked Quantum Dot Lasers
    Crowley, Mark Thomas
    Murrell, David
    Patel, Nishant
    Breivik, Magnus
    Lin, Chang-Yi
    Li, Yan
    Fimland, Bjorn-Ove
    Lester, Luke F.
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2011, 47 (08) : 1059 - 1068