Deep Multiview Learning to Identify Population Structure with Multimodal Imaging

被引:0
|
作者
Feng, Yixue [1 ]
Kim, Mansu [2 ]
Yao, Xiaohui [2 ]
Liu, Kefei [2 ]
Long, Qi [2 ]
Shen, Li [2 ]
机构
[1] Univ Penn, Sch Engn & Appl Sci, Philadelphia, PA 19104 USA
[2] Univ Penn, Perelman Sch Med, Philadelphia, PA USA
来源
2020 IEEE 20TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2020) | 2020年
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Deep learning; multiview learning; deep generalized canonical correlation analysis; multimodal imaging; image-driven population structure; PHENOTYPES;
D O I
10.1109/BIBE50027.2020.00057
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We present an effective deep multiview learning framework to identify population structure using multimodal imaging data. Our approach is based on canonical correlation analysis (CCA). We propose to use deep generalized CCA (DGCCA) to learn a shared latent representation of non-linearly mapped and maximally correlated components from multiple imaging modalities with reduced dimensionality. In our empirical study, this representation is shown to effectively capture more variance in original data than conventional generalized CCA (GCCA) which applies only linear transformation to the multi-view data. Furthermore, subsequent cluster analysis on the new feature set learned from DGCCA is able to identify a promising population structure in an Alzheimer's disease (AD) cohort. Genetic association analyses of the clustering results demonstrate that the shared representation learned from DGCCA yields a population structure with a stronger genetic basis than several competing feature learning methods.
引用
收藏
页码:308 / 314
页数:7
相关论文
共 50 条
  • [31] Deep learning with convex probe endobronchial ultrasound multimodal imaging: A validated tool for automated intrathoracic lymph nodes diagnosis
    Li, Jin
    Zhi, Xinxin
    Chen, Junxiang
    Wang, Lei
    Xu, Mingxing
    Dai, Wenrui
    Sun, Jiayuan
    Xiong, Hongkai
    ENDOSCOPIC ULTRASOUND, 2021, 10 (05) : 361 - +
  • [32] Deep learning imaging analysis to identify bacterial metabolic states associated with carcinogen production
    Maysam Orouskhani
    Sarwesh Rauniyar
    Norma Morella
    Daniel Lachance
    Samuel S. Minot
    Neelendu Dey
    Discover Imaging, 2 (1):
  • [33] Multimodal imaging and deep learning in geographic atrophy secondary to age-related macular degeneration
    Pfau, Maximilian
    Kuenzel, Sandrine H.
    Pfau, Kristina
    Schmitz-Valckenberg, Steffen
    Fleckenstein, Monika
    Holz, Frank G.
    ACTA OPHTHALMOLOGICA, 2023, 101 (08) : 881 - 890
  • [34] Utilisation of Deep Learning with Multimodal Data Fusion for Determination of Pineapple Quality Using Thermal Imaging
    Mohd Ali, Maimunah
    Hashim, Norhashila
    Abd Aziz, Samsuzana
    Lasekan, Ola
    AGRONOMY-BASEL, 2023, 13 (02):
  • [35] A multicenter study on deep learning for glioblastoma auto-segmentation with prior knowledge in multimodal imaging
    Tian, Suqing
    Liu, Yinglong
    Mao, Xinhui
    Xu, Xin
    He, Shumeng
    Jia, Lecheng
    Zhang, Wei
    Peng, Peng
    Wang, Junjie
    CANCER SCIENCE, 2024, 115 (10) : 3415 - 3425
  • [36] Deep Learning Approaches to Unimodal and Multimodal Analysis of Brain Imaging Data With Applications to Mental Illness
    Calhoun, Vince
    Plis, Sergey
    BIOLOGICAL PSYCHIATRY, 2018, 83 (09) : S82 - S83
  • [37] Uncertainty-Aware Multiview Deep Learning for Internet of Things Applications
    Xu, Cai
    Zhao, Wei
    Zhao, Jinglong
    Guan, Ziyu
    Song, Xiangyu
    Li, Jianxin
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (02) : 1456 - 1466
  • [38] SAR Automatic Target Recognition Based on Multiview Deep Learning Framework
    Pei, Jifang
    Huang, Yulin
    Huo, Weibo
    Zhang, Yin
    Yang, Jianyu
    Yeo, Tat-Soon
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (04): : 2196 - 2210
  • [39] Multimodal brain tumor detection using multimodal deep transfer learning
    Razzaghi, Parvin
    Abbasi, Karim
    Shirazi, Mahmoud
    Rashidi, Shima
    APPLIED SOFT COMPUTING, 2022, 129
  • [40] Application of deep learning to identify ductal carcinoma in situ and microinvasion of the breast using ultrasound imaging
    Zhu, Meng
    Pi, Yong
    Jiang, Zekun
    Wu, Yanyan
    Bu, Hong
    Bao, Ji
    Chen, Yujuan
    Zhao, Lijun
    Peng, Yulan
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2022, 12 (09) : 4633 - +