Deep Multiview Learning to Identify Population Structure with Multimodal Imaging

被引:0
|
作者
Feng, Yixue [1 ]
Kim, Mansu [2 ]
Yao, Xiaohui [2 ]
Liu, Kefei [2 ]
Long, Qi [2 ]
Shen, Li [2 ]
机构
[1] Univ Penn, Sch Engn & Appl Sci, Philadelphia, PA 19104 USA
[2] Univ Penn, Perelman Sch Med, Philadelphia, PA USA
来源
2020 IEEE 20TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2020) | 2020年
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Deep learning; multiview learning; deep generalized canonical correlation analysis; multimodal imaging; image-driven population structure; PHENOTYPES;
D O I
10.1109/BIBE50027.2020.00057
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We present an effective deep multiview learning framework to identify population structure using multimodal imaging data. Our approach is based on canonical correlation analysis (CCA). We propose to use deep generalized CCA (DGCCA) to learn a shared latent representation of non-linearly mapped and maximally correlated components from multiple imaging modalities with reduced dimensionality. In our empirical study, this representation is shown to effectively capture more variance in original data than conventional generalized CCA (GCCA) which applies only linear transformation to the multi-view data. Furthermore, subsequent cluster analysis on the new feature set learned from DGCCA is able to identify a promising population structure in an Alzheimer's disease (AD) cohort. Genetic association analyses of the clustering results demonstrate that the shared representation learned from DGCCA yields a population structure with a stronger genetic basis than several competing feature learning methods.
引用
收藏
页码:308 / 314
页数:7
相关论文
共 50 条
  • [21] Detecting Product Adoption Intentions via Multiview Deep Learning
    Zhang, Zhu
    Wei, Xuan
    Zheng, Xiaolong
    Li, Qiudan
    Zeng, Daniel Dajun
    INFORMS JOURNAL ON COMPUTING, 2022, 34 (01) : 541 - 556
  • [22] Deep Learning to Predict Geographic Atrophy Area and Growth Rate from Multimodal Imaging
    Anegondi, Neha
    Gao, Simon S.
    Steffen, Verena
    Spaide, Richard F.
    Sadda, SriniVas R.
    Holz, Frank G.
    Rabe, Christina
    Honigberg, Lee
    Newton, Elizabeth M.
    Cluceru, Julia
    Kawczynski, Michael G.
    Bengtsson, Thomas
    Ferrara, Daniela
    Yang, Qi
    OPHTHALMOLOGY RETINA, 2023, 7 (03): : 243 - 252
  • [23] A deep learning-based multimodal medical imaging model for breast cancer screening
    Junwei Chen
    Teng Pan
    Zhengjie Zhu
    Lijue Liu
    Ning Zhao
    Xue Feng
    Weilong Zhang
    Yuesong Wu
    Cuidan Cai
    Xiaojin Luo
    Bihai Lin
    Xuewei Wang
    Qiaoru Ye
    Rui Gao
    Zizhen Zhou
    Richard Beatson
    Jin Tang
    Ruijie Ming
    Dan Wang
    Jinhai Deng
    Guanglin Zhou
    Scientific Reports, 15 (1)
  • [24] Deep learning radiomics based on multimodal imaging for distinguishing benign and malignant breast tumours
    Lu, Guoxiu
    Tian, Ronghui
    Yang, Wei
    Liu, Ruibo
    Liu, Dongmei
    Xiang, Zijie
    Zhang, Guoxu
    FRONTIERS IN MEDICINE, 2024, 11
  • [25] Multimodal Deep Learning and Visible-Light and Hyperspectral Imaging for Fruit Maturity Estimation
    Garillos-Manliguez, Cinmayii A.
    Chiang, John Y.
    SENSORS, 2021, 21 (04) : 1 - 18
  • [26] Continual Multiview Task Learning via Deep Matrix Factorization
    Sun, Gan
    Cong, Yang
    Zhang, Yulun
    Zhao, Guoshuai
    Fu, Yun
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (01) : 139 - 150
  • [27] Dynamic object removal by fusing deep learning and multiview geometry
    Liu, Yanli
    Li, Qi
    Zhang, Heng
    Xiong, Neal N.
    Liu, Kunshan
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (01):
  • [28] Challenges in Deep Learning for Multimodal Applications
    Ghosh, Sayan
    ICMI'15: PROCEEDINGS OF THE 2015 ACM INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION, 2015, : 611 - 615
  • [29] Multimodal Learning with Deep Boltzmann Machines
    Srivastava, Nitish
    Salakhutdinov, Ruslan
    JOURNAL OF MACHINE LEARNING RESEARCH, 2014, 15 : 2949 - 2980
  • [30] Deep Learning for Multimodal Fall Detection
    Martinez-Villasenor, Lourdes
    Ponce, Hiram
    Perez-Daniel, Karina
    2019 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2019, : 3422 - 3429