Deep Multiview Learning to Identify Population Structure with Multimodal Imaging

被引:0
|
作者
Feng, Yixue [1 ]
Kim, Mansu [2 ]
Yao, Xiaohui [2 ]
Liu, Kefei [2 ]
Long, Qi [2 ]
Shen, Li [2 ]
机构
[1] Univ Penn, Sch Engn & Appl Sci, Philadelphia, PA 19104 USA
[2] Univ Penn, Perelman Sch Med, Philadelphia, PA USA
来源
2020 IEEE 20TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2020) | 2020年
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Deep learning; multiview learning; deep generalized canonical correlation analysis; multimodal imaging; image-driven population structure; PHENOTYPES;
D O I
10.1109/BIBE50027.2020.00057
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We present an effective deep multiview learning framework to identify population structure using multimodal imaging data. Our approach is based on canonical correlation analysis (CCA). We propose to use deep generalized CCA (DGCCA) to learn a shared latent representation of non-linearly mapped and maximally correlated components from multiple imaging modalities with reduced dimensionality. In our empirical study, this representation is shown to effectively capture more variance in original data than conventional generalized CCA (GCCA) which applies only linear transformation to the multi-view data. Furthermore, subsequent cluster analysis on the new feature set learned from DGCCA is able to identify a promising population structure in an Alzheimer's disease (AD) cohort. Genetic association analyses of the clustering results demonstrate that the shared representation learned from DGCCA yields a population structure with a stronger genetic basis than several competing feature learning methods.
引用
收藏
页码:308 / 314
页数:7
相关论文
共 50 条
  • [1] Deep multiview learning to identify imaging-driven subtypes in mild cognitive impairment
    Feng, Yixue
    Kim, Mansu
    Yao, Xiaohui
    Liu, Kefei
    Long, Qi
    Shen, Li
    BMC BIOINFORMATICS, 2022, 23 (SUPPL 3)
  • [2] Deep multiview learning to identify imaging-driven subtypes in mild cognitive impairment
    Yixue Feng
    Mansu Kim
    Xiaohui Yao
    Kefei Liu
    Qi Long
    Li Shen
    BMC Bioinformatics, 23
  • [3] Multiview Multimodal Feature Fusion for Breast Cancer Classification Using Deep Learning
    Hussain, Sadam
    Teevno, Mansoor Ali
    Naseem, Usman
    Avalos, Daly Betzabeth Avendano
    Cardona-Huerta, Servando
    Tamez-Pena, Jose Gerardo
    IEEE ACCESS, 2025, 13 : 9265 - 9275
  • [4] Diagnosis of osteosarcoma based on multimodal microscopic imaging and deep learning
    Wang, Zihan
    Wu, Jinjin
    Li, Chenbei
    Wang, Bing
    Wu, Qingxia
    Li, Lan
    Wang, Huijie
    Tu, Chao
    Yin, Jianhua
    JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES, 2024,
  • [5] Deep Multiview Learning for Hyperspectral Image Classification
    Liu, Bing
    Yu, Anzhu
    Yu, Xuchu
    Wang, Ruirui
    Gao, Kuiliang
    Guo, Wenyue
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (09): : 7758 - 7772
  • [6] Deep Multiview Learning from Sequentially Unaligned Data
    Tung D.P.
    Takasu A.
    IEEE Access, 2020, 8 : 217928 - 217946
  • [7] TWITTER USER GEOLOCATION USING DEEP MULTIVIEW LEARNING
    Tien Huu Do
    Duc Minh Nguyen
    Tsiligianni, Evaggelia
    Cornelis, Bruno
    Deligiannis, Nikos
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 6304 - 6308
  • [8] Multimodal Medical Imaging Using Modern Deep Learning Approaches
    Chanumolu, Rahul
    Alla, Likhita
    Chirala, Pavankumar
    Chennampalli, Naveen Chand
    Kolla, Bhanu Prakash
    PROCEEDINGS OF 3RD IEEE CONFERENCE ON VLSI DEVICE, CIRCUIT AND SYSTEM (IEEE VLSI DCS 2022), 2022, : 184 - 187
  • [9] Supervised Deep Canonical Correlation Analysis for Multiview Feature Learning
    Liu, Yan
    Li, Yun
    Yuan, Yun-Hao
    Qiang, Ji-Peng
    Ruan, Min
    Zhang, Zhao
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT VI, 2017, 10639 : 575 - 582
  • [10] Deep Multiview Union Learning Network for Multisource Image Classification
    Liu, Xu
    Jiao, Licheng
    Li, Lingling
    Cheng, Lin
    Liu, Fang
    Yang, Shuyuan
    Hou, Biao
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (06) : 4534 - 4546