From microfluidics to nanofluidics: DNA separation using nanofluidic entropic trap array device

被引:0
|
作者
Han, JY [1 ]
Craighead, HG [1 ]
机构
[1] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA
来源
关键词
separation; DNA; nanofluidics; entropic trap; biopolymer; electrophoresis;
D O I
暂无
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Fluidic devices with sub-micrometer dimensions provide new opportunities in manipulation and analysis of various biomolecules, such as deoxyribonucleic acid (DNA). As an example of such devices, a microchannel with an array of 'entropic traps' is introduced. The existence of sub-100nm constriction causes long double-stranded DNA molecules to be entropically trapped, and the length-dependent escape of DNA from the trap enables a band separation of DNA. Entropic traps are also used to manipulate and collect many DNA molecules into a narrow, well-defined initial band for electrophoresis launching. In addition to its speed and compactness, another important advantage of this artificial separation device over conventional gel electrophoresis is the ability to modify and control the device precisely for the optimization of a separation process. The similar device could be used to analyze proteins or other biopolymers.
引用
收藏
页码:42 / 48
页数:7
相关论文
共 50 条
  • [21] The Effect of Input DNA Copy Number on Genotype Call and Characterising SNP Markers in the Humpback Whale Genome Using a Nanofluidic Array
    Bhat, Somanath
    Polanowski, Andrea M.
    Double, Mike C.
    Jarman, Simon N.
    Emslie, Kerry R.
    PLOS ONE, 2012, 7 (06):
  • [22] Sheathless separation of microalgae from bacteria using a simple straight channel based on viscoelastic microfluidics
    Yuan, Dan
    Zhao, Qianbin
    Yan, Sheng
    Tang, Shi-Yang
    Zhang, Yuxin
    Yun, Guolin
    Nguyen, Nam-Trung
    Zhang, Jun
    Li, Ming
    Li, Weihua
    LAB ON A CHIP, 2019, 19 (17) : 2811 - 2821
  • [23] Cascaded contraction-expansion channels for bacteria separation from RBCs using viscoelastic microfluidics
    Bilican, Ismail
    JOURNAL OF CHROMATOGRAPHY A, 2021, 1652 (1652)
  • [24] High resolution and rapid separation of bacteria from blood using elasto-inertial microfluidics
    Narayana Iyengar, Sharath
    Kumar, Tharagan
    Martensson, Gustaf
    Russom, Aman
    ELECTROPHORESIS, 2021, 42 (23) : 2538 - 2551
  • [25] HIGH-SPEED PARALLEL SEPARATION OF DNA RESTRICTION FRAGMENTS USING CAPILLARY ARRAY ELECTROPHORESIS
    CLARK, SM
    MATHIES, RA
    ANALYTICAL BIOCHEMISTRY, 1993, 215 (02) : 163 - 170
  • [26] High-Throughput Separation of White Blood Cells From Whole Blood Using Inertial Microfluidics
    Zhang, Jun
    Yuan, Dan
    Sluyter, Ronald
    Yan, Sheng
    Zhao, Qianbin
    Xia, Huanming
    Tan, Say Hwa
    Nam-Trung Nguyen
    Li, Weihua
    IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2017, 11 (06) : 1422 - 1430
  • [27] Separation of recombinant antibodies from DNA using divalent cations
    Satzer, Peter
    Tscheliessnigg, Anne
    Sommer, Ralf
    Jungbauer, Alois
    ENGINEERING IN LIFE SCIENCES, 2014, 14 (05): : 477 - 484
  • [28] Separation of catecholamines and dopamine-derived DNA adduct using a microfluidic device with electrochemical detection
    Dawoud, A. A.
    Kawaguchi, T.
    Markushin, Y.
    Porter, M. D.
    Jankowiak, R.
    SENSORS AND ACTUATORS B-CHEMICAL, 2006, 120 (01): : 42 - 50
  • [29] High-efficient white blood cell separation from whole blood using cascaded inertial microfluidics
    Cha, Haotian
    Kang, Xiaoyue
    Yuan, Dan
    de Villiers, Belinda
    Mak, Johnson
    Nam-Trung Nguyen
    Zhang, Jun
    TALANTA, 2025, 284
  • [30] Efficient separation of tumor cells from untreated whole blood using a novel multistage hydrodynamic focusing microfluidics
    Gao, Rongke
    Cheng, Lei
    Wang, Shiyi
    Bi, Xiaobai
    Wang, Xueli
    Wang, Rui
    Chen, Xinyu
    Zha, Zhengbao
    Wang, Feng
    Xu, Xiaofeng
    Zhao, Gang
    Yu, Liandong
    TALANTA, 2020, 207