Inverting the Turan problem with chromatic number

被引:1
|
作者
Zhu, Xiutao [1 ]
Chen, Yaojun [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
关键词
Turan problem; Extremal graph; Chromatic number; SUBGRAPHS;
D O I
10.1016/j.disc.2021.112517
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a graph G and a family of graphs H, the Turan number ex(G, H) is defined to be the maximum number of edges among all H-free subgraphs of G. Inverting this problem, Briggs and Cox (2019) [5] studied the extremal function epsilon(H)(k) = sup{e(G) vertical bar ex(G, H) < k}, where e(G) is the size of G, and suggested to investigate the extremal function phi(H)(k) = sup{chi(G) vertical bar ex(G, H) < k}, where chi(G) denotes the chromatic number of G. Let K-n be a complete graph of order nand Ha given graph. In this paper, we establish a tight general upper bound for phi(H)(k) and conjecture phi(H)(k) = max{n vertical bar ex(K-n, H) < k} for H not equal 2K(2). We also confirm this conjecture for many instances of H. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Inverting the Turan problem
    Briggs, Joseph
    Cox, Christopher
    DISCRETE MATHEMATICS, 2019, 342 (07) : 1865 - 1884
  • [2] Chromatic number via Turan number
    Alishahi, Meysam
    Hajiabolhassan, Hossein
    DISCRETE MATHEMATICS, 2017, 340 (10) : 2366 - 2377
  • [3] On the chromatic number of Euclidean space and the Borsuk problem
    Raigorodskii, A. M.
    Shitova, I. M.
    MATHEMATICAL NOTES, 2008, 83 (3-4) : 579 - 582
  • [4] On the chromatic number of Euclidean space and the Borsuk problem
    A. M. Raigorodskii
    I. M. Shitova
    Mathematical Notes, 2008, 83 : 579 - 582
  • [5] Two bounds of chromatic number in graphs coloring problem
    Gueham, Assia
    Nagih, Anass
    Haddadene, Hacene Ait
    2014 INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT), 2014, : 292 - 296
  • [6] On the Turan Number of Theta Graphs
    Zhai, Mingqing
    Fang, Longfei
    Shu, Jinlong
    GRAPHS AND COMBINATORICS, 2021, 37 (06) : 2155 - 2165
  • [7] On the Turan number of ordered forests
    Korandi, Daniel
    Tardos, Gabor
    Tomon, Istvan
    Weidert, Craig
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2019, 165 : 32 - 43
  • [8] The Turan number of book graphs
    Yan, Jingru
    Zhan, Xingzhi
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2025, 56 (01) : 140 - 149
  • [9] Packing chromatic number versus chromatic and clique number
    Bresar, Bostjan
    Klavzar, Sandi
    Rall, Douglas F.
    Wash, Kirsti
    AEQUATIONES MATHEMATICAE, 2018, 92 (03) : 497 - 513
  • [10] On the fractional chromatic number, the chromatic number, and graph products
    Klavzar, S
    Yeh, HG
    DISCRETE MATHEMATICS, 2002, 247 (1-3) : 235 - 242