Stick-to-sliding transition in contact-resonance atomic force microscopy

被引:4
|
作者
Ma, C. [1 ,2 ]
Pfahl, V. [1 ]
Wang, Z. [1 ]
Chen, Y. [2 ]
Chu, J. [2 ]
Phani, M. K. [3 ,5 ]
Kumar, A. [3 ]
Arnold, W. [1 ,4 ]
Samwer, K. [1 ]
机构
[1] Georg August Univ Gottingen, Phys Inst 1, D-37077 Gottingen, Germany
[2] Univ Sci & Technol China, Dept Precis Machinery & Precis Instrumentat, Hefei 230026, Anhui, Peoples R China
[3] Indira Gandhi Ctr Atom Res, Met & Mat Grp, Kalpakkam 603102, Tamil Nadu, India
[4] Saarland Univ, Dept Mat Sci & Engn, D-66123 Saarbrucken, Germany
[5] Jindal Univ, Raigarh 496109, Chhattisgarh, India
基金
中国国家自然科学基金;
关键词
ACOUSTIC MICROSCOPY; FRICTION; ADHESION; ELASTICITY; SCALE;
D O I
10.1063/1.5036975
中图分类号
O59 [应用物理学];
学科分类号
摘要
Contact-resonance atomic force microscopy (CR-AFM) has been used to measure the viscoelastic loss tangent of soft materials such as polymers. Usually, the damping is attributed to the dissipation in the contact volume due to internal friction and air damping of the cantilever. However, partial slip or even full sliding can exist in the contact zone under tangential loading, and thus, the accompanying energy dissipation must be taken into account when measuring the damping constant Q(loc)(-1).Here, the stick-to-sliding transition of the tip-sample contact in CR-AFM was studied. Amplitude drops were observed in the resonance curves caused by such stick-to-sliding transitions. The results show that the stick-to-sliding transition arises under small contact forces and large excitation amplitudes. Extra energy loss from full sliding induces large contact damping. The critical lateral displacement needed for the stick-to-sliding transition varies linearly with the contact radius. Published by AIP Publishing.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Scanning speed phenomenon in contact-resonance atomic force microscopy
    Glover, Christopher C.
    Killgore, Jason P.
    Tung, Ryan C.
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2018, 9 : 945 - 952
  • [2] Conduction electrons as dissipation channel in friction experiments at the metal-metal transition of LSMO measured by contact-resonance atomic force microscopy
    Pfahl, V.
    Phani, M. K.
    Buechsenschuetz-Goebeler, M.
    Kumar, A.
    Moshnyaga, V.
    Arnold, W.
    Samwer, K.
    APPLIED PHYSICS LETTERS, 2017, 110 (05)
  • [3] Intermittent contact resonance atomic force microscopy
    Stan, Gheorghe
    Gates, Richard S.
    NANOTECHNOLOGY, 2014, 25 (24)
  • [4] Modulation of contact resonance frequency accompanying atomic-scale stick-slip in friction force microscopy
    Steiner, Pascal
    Roth, Raphael
    Gnecco, Enrico
    Glatzel, Thilo
    Baratoff, Alexis
    Meyer, Ernst
    NANOTECHNOLOGY, 2009, 20 (49)
  • [5] Image contrast reversals in contact resonance atomic force microscopy
    Ma, Chengfu
    Chen, Yuhang
    Wang, Tian
    AIP ADVANCES, 2015, 5 (02):
  • [6] Nanoscale mechanics by tomographic contact resonance atomic force microscopy
    Stan, Gheorghe
    Solares, Santiago D.
    Pittenger, Bede
    Erina, Natalia
    Su, Chanmin
    NANOSCALE, 2014, 6 (02) : 962 - 969
  • [7] Dual resonance excitation system for the contact mode of atomic force microscopy
    Kopycinska-Mueller, M.
    Striegler, A.
    Schlegel, R.
    Kuzeyeva, N.
    Koehler, B.
    Wolter, K. -J.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (04)
  • [8] Vibration analysis of atomic force microscope cantilevers in contact resonance force microscopy using Timoshenko beam model
    Zhou, Xilong
    Wen, Pengfei
    Li, Faxin
    ACTA MECHANICA SOLIDA SINICA, 2017, 30 (05) : 520 - 530
  • [9] Elastic-properties measurement at high temperatures through Contact Resonance Atomic Force Microscopy
    Marinello, Francesco
    Pezzuolo, Andrea
    Carmignato, Simone
    Savio, Enrico
    De Chiffre, Leonardo
    Sartori, Luigi
    Cavalli, Raffaele
    NANOFORUM 2014, 2015, 1667
  • [10] Nanoscale-resolved elasticity: contact mechanics for quantitative contact resonance atomic force microscopy
    Jakob, A. M.
    Buchwald, J.
    Rauschenbach, B.
    Mayr, S. G.
    NANOSCALE, 2014, 6 (12) : 6898 - 6910