A carbon cloth-based lithium composite anode for high-performance lithium metal batteries

被引:82
作者
Zhou, Ying [1 ,2 ]
Han, Yu [1 ,2 ]
Zhang, Hongtao [1 ,2 ,3 ]
Sui, Dong [1 ,2 ]
Sun, Zhenhe [1 ,2 ]
Xiao, Peishuang [1 ,2 ]
Wang, Xueting [1 ,2 ]
Ma, Yanfeng [1 ,2 ,3 ]
Chen, Yongsheng [1 ,2 ,3 ]
机构
[1] Nankai Univ, Ctr Nanoscale Sci & Technol, State Key Lab & Inst Elementoorgan Chem, Coll Chem, Tianjin 300071, Peoples R China
[2] Nankai Univ, Key Lab Funct Polymer Mat, State Key Lab & Inst Elementoorgan Chem, Coll Chem, Tianjin 300071, Peoples R China
[3] Nankai Univ, Natl Inst Adv Mat, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Li metal battery; Carbon cloth; Li composite anode; Dendrite-mitigation; Full cell; SOLID-ELECTROLYTE INTERPHASE; CURRENT COLLECTOR; CURRENT-DENSITY; DENDRITE; DEPOSITION; LAYER; POLYSULFIDE; NUCLEATION; MATRIX; OXIDE;
D O I
10.1016/j.ensm.2018.04.006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The two most challenging issues for Li metal based battery are infinite volume change during uneven deposition/dissolution process and the growth of Li dendrite. Therefore, the Li metal battery exhibits poor cycling life span and even the safety issue. Here we developed a facile method to prepare dendrite-mitigation Li composite electrode (Li@CC) using commercial carbon cloth as the interfacial layer between Li metal anode and the electrolyte without pre-stored Li process in carbonate-based electrolyte. The Li@CC symmetrical cells exhibit highly reduced polarization (150 mV) and stable cycling performance (> 200 cycles) at a high current density of 5 mA cm(-2). Furthermore, the Li@CC composite anode based full cell with limited Li and moderately high loading cathode exhibits longer cycling life span, better rate performance, lower and more stable polarization than that of bare Li anode. Especially, the Li@CC-Li4Ti5O12 full cell delivers an excellent cycling performance of 700 cycles with capacity retention of over 80%, which shows dozens of times' improvement than that of full cell based on bare Li. We believe that the high performance are due to the unique characteristics of carbon cloth such as the high conductivity, enlarged surface area and intrinsic pore structure consisted of thin crystalline graphite sheets. The high performance results with the commercial available carbon cloth can not only offer a competitive approach for industry application of Li metal battery, but also be used for other metal based energy devices.
引用
收藏
页码:222 / 229
页数:8
相关论文
共 43 条
[1]   Variations on Li3N protective coating using ex-situ and in-situ techniques for Li° in sulphur batteries [J].
Baloch, Marya ;
Shanmukaraj, Devaraj ;
Bondarchuk, Oleksandr ;
Bekaert, Emilie ;
Rojo, Teofilo ;
Armand, Michel .
ENERGY STORAGE MATERIALS, 2017, 9 :141-149
[2]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[3]   Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries [J].
Cheng, Xin-Bing ;
Hou, Ting-Zheng ;
Zhang, Rui ;
Peng, Hong-Jie ;
Zhao, Chen-Zi ;
Huang, Jia-Qi ;
Zhang, Qiang .
ADVANCED MATERIALS, 2016, 28 (15) :2888-2895
[4]   A Review of Solid Electrolyte Interphases on Lithium Metal Anode [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Wei, Fei ;
Zhang, Ji-Guang ;
Zhang, Qiang .
ADVANCED SCIENCE, 2016, 3 (03)
[5]   Dual-Phase Lithium Metal Anode Containing a Polysulfide-Induced Solid Electrolyte Interphase and Nanostructured Graphene Framework for Lithium-Sulfur Batteries [J].
Cheng, Xin-Bing ;
Peng, Hong-Jie ;
Huang, Jia-Qi ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
ACS NANO, 2015, 9 (06) :6373-6382
[6]   Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism [J].
Ding, Fei ;
Xu, Wu ;
Graff, Gordon L. ;
Zhang, Jian ;
Sushko, Maria L. ;
Chen, Xilin ;
Shao, Yuyan ;
Engelhard, Mark H. ;
Nie, Zimin ;
Xiao, Jie ;
Liu, Xingjiang ;
Sushko, Peter V. ;
Liu, Jun ;
Zhang, Ji-Guang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (11) :4450-4456
[7]   Metal oxide nanoparticles induced step-edge nucleation of stable Li metal anode working under an ultrahigh current density of 15 mA cm-2 [J].
Jin, Chengbin ;
Sheng, Ouwei ;
Lu, Yun ;
Luo, Jianmin ;
Yuan, Huadong ;
Zhang, Wenkui ;
Huang, Hui ;
Gan, Yongping ;
Xia, Yang ;
Liang, Chu ;
Zhang, Jun ;
Tao, Xinyong .
NANO ENERGY, 2018, 45 :203-209
[8]   3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries [J].
Jin, Chengbin ;
Sheng, Ouwei ;
Luo, Jianmin ;
Yuan, Huadong ;
Fang, Cong ;
Zhang, Wenkui ;
Huang, Hui ;
Gan, Yongping ;
Xia, Yang ;
Liang, Chu ;
Zhang, Jun ;
Tao, Xinyong .
NANO ENERGY, 2017, 37 :177-186
[9]   Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition [J].
Kozen, Alexander C. ;
Lin, Chuan-Fu ;
Pearse, Alexander J. ;
Schroeder, Marshall A. ;
Han, Xiaogang ;
Hu, Liangbing ;
Lee, Sang-Bok ;
Rubloff, Gary W. ;
Noked, Malachi .
ACS NANO, 2015, 9 (06) :5884-5892
[10]   High performance lithium metal anode: Progress and prospects [J].
Lang, Jialiang ;
Qi, Longhao ;
Luo, Yuzi ;
Wu, Hui .
ENERGY STORAGE MATERIALS, 2017, 7 :115-129